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Abstract

We comment that the conditionally exactly solvable potential of Dutt et al (1995
J. Phys. A: Math. Gen. 28 L107) and the exactly solvable potential from which it is
derived form a dual system.
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Conditionally exactly solvable (CES) potentials have received considerable attention

in recent times [1, 2, 3, 4, 5]. The main feature of such potentials is that one or more

coupling constants in them are fixed to a specific value. There have been instances of CES

potentials running into inconsistencies with threshold boundary conditions [3, 4], but there

do exist some which possess valid asymptotic behaviour. One such acceptable class is the

one proposed by Dutt et al [2] sometime ago and which reads 1

V (y) =
A

1 + e−2y
− B

(1 + e−2y)1/2
− 3

4(1 + e−2y)2
(1)

where y ∈ (−∞,∞) and A, B are some real parameters defining the shape of the potential.

Note the presence of the fixed numerical value −3
4
for one of the coupling constants in V (y)

that provides its identification as a CES. Potential (1) has for its associated eigenfunctions

ψn(y) = z
1

4 (z − 1)−(
c
2
−

B
4c)(z + 1)−(

c
2
−

B
4c)P

( B
2c

−c,− B
2c

−c)
n (z), (2)

where z = 1 + e−2y and c is related to the energy eigenvalue −ǫn as c = n + 1
2
+

√
ǫn.

Actually
√
ǫn satisfies a complicated cubic equation but it has been observed [5] that only

one of its roots is compatible with the normalizability condition.

Some remarks are in order concerning the derivation of the eigenfunctions (2) and the

energy eigenvalue equation. The Schrödinger equation is subjected to a coordinate trans-

formation and the transformation function is chosen in such a manner that corresponding

to an exactly solvable (ES) potential one has a new analytically solvable one. It turns

out that for a half-line-full-line mapping function, one can generate the CES potential for

some known shape-invariant potential as an input. The available energy eigenvalues and

eigenfunctions of the latter then furnish the corresponding ones for the former.

The purpose of this comment is to establish that the CES potential (1) and its ac-

companying shape-invariant ES potential are actually dual partners in the sense that the

corresponding time-independent Schrödinger equations are mapped to each other under

appropriate space transformations called the dual transformations [6, 7, 8]. The latter are

known to relate some apparently unconnected problems both in classical and quantum me-

chanics. The one-dimensional harmonic oscillator and the Coulomb problem [9], the latter

and the isotropic oscillator [10, 11], the Pöschl-Teller and infinite potential well problems [6]

are some examples of dual systems (DS).
1There is also another class of CES potentials proposed in [2] but by a redefinition of parameters [5] it

can be made equivalent to (1) and so is not considered here.
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In the present context, let us write down the following set of DS given by the pair of

Schrödinger equations (with h̄ = 2m = 1)



− d2

dx2
+ λ

(

dy

dx

)2

+ ν
dy

dx



ψ = µψ (3)



− d2

dy2
− 1

2
{x, y} − µ

(

dx

dy

)2

+ ν
dx

dy



φ = −λφ (4)

where µ and −λ are the energies, ν is a constant, {x, y} is the Schwarzian derivative, which

can be written as

{x, y} = − 1

y′2





d

dx

(

y′′

y′

)

− 1

2

(

y′′

y′

)2


 (5)

the primes denoting derivatives with respect to the variable x. The wave functions ψ and

φ are related in the manner

ψ =

(

dx

dy

)1/2

φ. (6)

In DS as above, the energy and the coupling constant µ and λ exchange roles. Further DS

are meaningful when the potential and its partner are expressible as

W (x) = λ

(

dy

dx

)2

+ ν
dy

dx
(7)

U(y) = −µ
(

dx

dy

)2

+ ν
dx

dy
− 1

2
{x, y}. (8)

Generalizations to include integral or even fractional powers in the derivatives in (7) and

(8) are straightforward.

We now set dy/dx = coth x, i.e., y = log sinh x: in other words, for y ∈ (−∞,∞) the

variable x ∈ (0,∞). It implies from (7) that the Schrödinger equation (3) has the potential

W (x) = W̃ (x) + α(α− 1), where

W̃ (x) = −2β coth x+ α(α− 1) cosech2 x x ∈ (0,∞) (9)

which is ES (for β > α2, α > 0) and shape invariant as well. The energy eigenvalues are

given by [12]

En = −
(

β

α + n

)2

− (α + n)2 n = 0, 1, 2, . . . . (10)
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Indeed the correspondence with (3) is provided by the following identifications

λ = α(α− 1)

ν = −2β (11)

µ = En + α(α− 1).

We next enquire into the dual potential U(y). It is easy to work out {x, y} from (5) as

{x, y} = −
(

sech2 x tanh2 x+ sech2 x− 1

2
sech4 x

)

. (12)

Hence we find from (8) and (4) that U(y) = Ũ(y) + 1
4
, where

Ũ(y) =
[(

1

2
− µ

)

tanh2 x+ ν tanhx− 3

4
tanh4 x

]

x=sinh−1(ey)
(13)

ǫn = α(α− 1) +
1

4
. (14)

The relation between the energies −ǫn and En turns out to be

ǫn + En = µ+
1

4
. (15)

On elimination of the parameter α, from (10), (11) and (14) we then get a cubic equation

in
√
ǫn, similar to that given in [2]. Further, in terms of the variable y ∈ (−∞,∞), Ũ(y)

in (13) translates to

Ũ(y) =
1
2
− µ

1 + e−2y
+

ν

(1 + e−2y)1/2
− 3

4(1 + e−2y)2
y ∈ (−∞,∞) (16)

which is identical to the potential in (1) for µ = 1
2
− A and ν = −B. Finally, the wave

functions for Ũ(y) can be obtained from (6) and yield the same form as in (2).

To conclude we have demonstrated that the CES potential of Dutt et al and its ES

partner form a DS.

One of us (BB) gratefully acknowledges the support of the National Fund for Scientific

Research (FNRS), Belgium, and the warm hospitality at PNTPM, Université Libre de
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