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Based on the results of the classification by T.-h. Abe et al., Nucl. Phys. B894, 374 (2015)., we

exhaustively investigate Yukawa sector of Uð8Þ model on magnetized orbifolds T2=Z2, T
2=Z3, T

2=Z4 and

T2=Z6 by evaluating ratios of the mass eigenvalues of the three states in all the possible configurations

with one and two Higgs pairs where three generations are realized in fermions. Because of the smearing

effect via kinetic mixing, one can realize a hierarchy such as 10−2–10−3, but it is very difficult to achieve

the mass ratio between the up and top quarks (mup=mtop ∼ 10−5) on the complicated magnetized orbifolds

T2=ZNðN ¼ 3; 4; 6Þ.

DOI: 10.1103/PhysRevD.94.035031

I. INTRODUCTION

Even after the completion of the standard model (SM)

by the discovery of the Higgs boson [1,2], the origin of

properties of the matter fields, especially the very hierar-

chical mass spectra of the quarks and the leptons, is still

concealed. Quantized magnetic fluxes of a unified gauge

group among extra directions of the spacetime provide us a

fascinating guiding principle, where the fluxes trigger an

explicit breaking of a unified gauge group down to the

ones including the SM gauge group. Interestingly, the

four-dimensional chiral fermions on such magnetized

backgrounds are degenerated and their profiles are quasi-

localized in the extra dimensions, where the former and

latter properties give us reasonable answers to the mysteries

of the three generations and the Yukawa hierarchies,

respectively. A reasonable starting point is ten-dimensional

(10D) super Yang-Mills (SYM) theory on magnetized tori

[3–9], which could be an effective theory of superstring

theories.
1
Note that various phenomenological aspects have

been pursued: Yukawa couplings [7], realization of quark/

lepton masses and their mixing angles [10,11], higher order

couplings [12], flavor symmetries [13–19], massive modes

[20], and others [21–34]. Some related works in other

stringy contexts (e.g., intersecting D-brane model and

heterotic string theory) are found in [8,9,35–45].
2
Two-

dimensional torus is the simplest choice in the space which

the magnetic fluxes are turned on. Besides, various toroidal

orbifolds can be candidates. Note that their geometrical

aspects are discussed within the context of string theory

[50–52] and higher-dimensional field theories [53–59].

Previously, a technical difficulty exists for analytical

calculations of Yukawa couplings when the backgrounds

are both magnetized and orbifolded. However, a progress

was made in Ref. [60] in a dual description with operator

formalism,
3
which enables us to write down analytical

forms of Yukawa couplings on such complicated

geometries even though Wilson line phases and/or

Scherk-Schwarz phases are also introduced (see [62] and

[51,63–71].). Inspired by this achievement, all of the

possible configurations were derived and classified when

the gauge group is Uð8Þ in Ref. [72], which is the minimal

choice in the case of UðNÞ-type theories [10,11,29,73,74]
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1
In this paper, our setups will be discussed in a framework of

supersymmetric Yang-Mills theories with UðNÞ gauge groups.
It would, however, be of great interest to embed our setups into
superstring theories. Although it is known that UðNÞ gauge
groups are hard to be obtained in 10D type II string theory with
D-branes, our results will be still useful because some properties
with respect to zero-mode wave functions, their degeneracies and
Yukawa couplings induced by magnetic fluxes are the same as
those even in cases of other gauge groups.

2
Another attractive direction is considering various boundary

conditions of fields on point interactions (zero-thickness branes)
in the bulk space of a five-dimensional theory on S1 (or a line
segment) [46–49].

3
Note that only T2-related cases were discussed in [60]. But,

addressing other higher-dimensional tori is possible in principle
in a similar method. The case of shifted orbifolds with magnetic
fluxes was done in [61].
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(see also [24,25] and [43,44] for discussions in E6;7;8 and

SOð32Þ groups, respectively.).
Based on the result of classification, we exhaustively

analyze all the possible configurations with one and two

Higgs pairs on orbifolds T2=Z2; T
2=Z3; T

2=Z4; T
2=Z6

where three generations are realized in fermions by

evaluating ratios of the mass eigenvalues of the three

states.
4
An important point is that we should realize the

ratio mup=mtop ∼ 10−5 in the up-quark sector. Whether or

not this magnitude is achievable is a significant criterion

for selecting type of configurations on the backgrounds,

T2=Z2; T
2=Z3; T

2=Z4; T
2=Z6.

This paper is organized as follows. In Sec. II, we briefly

review basic properties of magnetized systems, which

include the explicit form for Yukawa calculations on

magnetized orbifolds based on the two-dimensional torus.

In Sec. III, we calculate ratios of mass eigenvalues of

fermion zero modes in all the configurations with three

generations and one or two pairs of SUð2ÞL Higgs doublets.
Section IV is the conclusion.

II. BRIEF REVIEW ON TEN-DIMENSIONAL SYM

ON MAGNETIZED ORBIFOLDS

A. Setups

First of all, we briefly review the basics of the ten-

dimensional super Yang-Mills theory on (generalized)

magnetized orbifolds based on descriptions in [72], where

we focus on the two-dimensional part determining flavor

structure of T2=ZNðN ¼ 2; 3; 4; or 6Þ. We consider the

UðNÞ theory in the notation adopted in [72],

S ¼

Z

M4

d4x

Z

ðT2Þ3
d6z

×

�

−
1

4
trðFMNF

MNÞ þ
1

2
trðλ̄ΓMiDMλÞ

�

; ð2:1Þ

which is defined on a product of four-dimensional

Minkowski space and three factorizable 2-tori. The capital

roman indicesM,N run over μð¼ 0; 1; 2; 3Þ, fzi; zig, where
the i-th (i ¼ 1, 2, 3) 2-torus is described by the complex

coordinates zi ¼ y2iþ2 þ iy2iþ3 and its complex conjuga-

tion zi ¼ y2iþ2 − iy2iþ3 made by the two Cartesian coor-

dinates representing the extra directions, y2iþ2 and y2iþ3.

We take each torus modulus parameter τið⊂ CÞ as Imτi > 0

for convenience. We use the short-hand notation d6z

meaning Π
3
i¼1dzidzi. On T2

i , the coordinate zi is identified

as zi ∼ zi þ 1 ∼ zi þ τi. The bulk N ¼ 1 supersymmetric

(in ten-dimensional) theory contains the ten-dimensional

vector fields AM and the gaugino fields λ described by

ten-dimensional Majorana-Weyl spinors.

The gaugino fields and the ten-dimensional vector fields

are Kaluza-Klein (KK) decomposed as

λðx; fzi; zigÞ ¼
X

l;m;n

χl;m;nðxÞ ⊗ ψ
ð1Þ
l ðz1; z1Þ ⊗ ψ

ð2Þ
m ðz2; z2Þ

⊗ ψ
ð3Þ
n ðz3; z3Þ; ð2:2Þ

AMðx; fzi; zigÞ ¼
X

l;m;n

φl;m;n;MðxÞ ⊗ ϕ
ð1Þ
l;Mðz1; z1Þ

⊗ ϕ
ð2Þ
m;Mðz2; z2Þ ⊗ ϕ

ð3Þ
n;Mðz3; z3Þ; ð2:3Þ

where l, m, n are KK indices and ψ
ðiÞ
l is a two-dimensional

spinor describing the lth KK mode on the ith T2, whose

exact form is ψ
ðiÞ
l ¼ ðψ

ðiÞ
l;þ;ψ

ðiÞ
l;−Þ

T
and the corresponding

two-dimensional chirality (þ or −) is denoted by si. We

adopt the gamma matrices ~Γ
m (identified by the Cartesian

coordinates) corresponding to the ith torus as

~Γ
2iþ2 ¼ iσ1; ~Γ

2iþ3 ¼ iσ2; ð2:4Þ

where σ1;2 are Pauli matrices. In the following part, we

basically focus on the zero modes ðl ¼ m ¼ n ¼ 0Þ on the

T2=ZN sector which describes flavor structure by omitting

the KK and torus indices. We also skip to show coordinates

z2; z̄2; z3; z̄3 in ten-dimensional fields to avoid clumsy

descriptions.

We introduce factorizable Abelian magnetic fluxes on

the three T2 through the classical vector potential of AM in

the following forms,

AðbÞðz; z̄Þ ¼
π

gImτ

0

B
B
@

M1Im½ðz̄þ C1Þdz�1N1×N1
0

. .
.

0 MnIm½ðz̄þ CnÞdz�1Nn×Nn

1

C
C
A

¼
1

4iImτ
ðB̄dz − Bdz̄Þ; ð2:5Þ

4
A similar calculation was done in the context of gauge-Higgs unification scenario in the gauge group G ×Uð1ÞX on

T2=ZNðN ¼ 2; 3; 4; 6Þ, where G is a simple group including the part SUð2ÞL × Uð1ÞZ in [75] by adopting the same method in
[60,72]. Note that matter unification is not realized in this model.
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where Cjðj ¼ 1;…; nÞ represent the corresponding Wilson

line phases on T2=ZN , and Mjðj ¼ 1;…; nÞ should be

integers because of Dirac’s quantization condition on

T2=ZN . On the magnetized T2=ZN , possible choices of

Cj are limited. Since it was shown that this degrees of

freedom can be gauged away by a large gauge trans-

formations [62], we set Cj ¼ 0. Under this background,

the original gauge group UðNÞ explicitly breaks down as

UðNÞ → Π
n
a¼1UðNaÞ with N ¼

P
n
a¼1 Na. We can derive

the following relations,

AðbÞðzþ 1; z̄þ 1Þ ¼ AðbÞðz; z̄Þ þ dξ1ðzÞ; ð2:6Þ

AðbÞðzþ τ; z̄þ τ̄Þ ¼ AðbÞðz; z̄Þ þ dξτðzÞ; ð2:7Þ

ξ1ðzÞ ¼
1

2Imτ
Im½B�; ð2:8Þ

ξτðzÞ ¼
1

2Imτ
Im½τ̄B�; ð2:9Þ

where d plays as an exterior derivative on T2=ZN . Here,

the Lagrangian density in Eq. (2.1) should be single-

valued under every torus identification z ∼ zþ 1 ∼ zþ τ,

and then in the gaugino fields λðx; z; z̄Þ, the following

pseudoperiodic boundary conditions should be arranged,

λðx; zþ 1; z̄þ 1Þ ¼ U1ðzÞλðx; z; z̄ÞU1ðzÞ
†; ð2:10Þ

λðx; zþ τ; z̄þ τ̄Þ ¼ UτðzÞλðx; z; z̄ÞUτðzÞ
†; ð2:11Þ

with

U1ðzÞ ≔ eigξ1ðzÞþ2πiα; UτðzÞ ≔ eigξτðzÞþ2πiβ; ð2:12Þ

α ≔

0

B
B
@

α11N1×N1
0

. .
.

0 αn1Nn×Nn

1

C
C
A
;

β ≔

0

B
B
@

β11N1×N1
0

. .
.

0 βn1Nn×Nn

1

C
C
A
; ð2:13Þ

where αj and βj ðj ¼ 1;…; nÞ describe Scherk-Schwarz

phases and can take limited numbers.

Here, we exemplify the fermionic part in the

specific case of UðNÞ → UðNaÞ ×UðNbÞ. As two-

dimensional spinors, the gaugino fields are decomposed

as

ψðz; z̄Þ ¼

�
ψaaðz; z̄Þ ψabðz; z̄Þ

ψbaðz; z̄Þ ψbbðz; z̄Þ

�

: ð2:14Þ

The parts represented by ψaa and ψbb correspond to

the representation under the unbroken gauge group

UðNaÞ ×UðNbÞ, while ψ
ab and ψba are the bifundamental

matter fields as ðNa; NbÞ and ðNa; NbÞ, respectively. We

obtain the zero-mode equations for these gaugino fields on

the T2=ZN with the two-dimensional chirality (þ or −) as

 

∂ z̄ψ
aa
þ ½∂ z̄ þ

π
2Imτ

ðMabzÞ�ψ
ab
þ

½∂ z̄ þ
π

2Imτ
ðMbazÞ�ψ

ba
þ ∂ z̄ψ

bb
þ

!

¼ 0;

ð2:15Þ

 

∂zψ
aa
− ½∂z −

π
2Imτ

ðMabz̄Þ�ψ
ab
−

½∂z −
π

2Imτ
ðMbaz̄Þ�ψ

ba
− ∂zi

ψbb
−

!

¼ 0;

ð2:16Þ

with the short-hand notations Mab ≔ Ma −Mb. The

effective boundary conditions of the fields are easily

written down,

ψab
s ðzþ 1; z̄þ 1Þ ¼ ei

πs
Imτ

Im½Mabz�þ2πiαabψab
s ðz; z̄Þ;

ψba
s ðzþ 1; z̄þ 1Þ ¼ ei

πs
Imτ

Im½Mbaz�þ2πiαbaψba
s ðz; z̄Þ;

ψaa
s ðzþ 1; z̄þ 1Þ ¼ ψaa

s ðz; z̄Þ;

ψbb
s ðzþ 1; z̄þ 1Þ ¼ ψbb

s ðz; z̄Þ; ð2:17Þ

ψab
s ðzþ τ; z̄þ τ̄Þ ¼ ei

πs
Imτ

Im½τ̄ðMabzÞ�þ2πiβabψab
s ðz; z̄Þ;

ψba
s ðzþ τ; z̄þ τ̄Þ ¼ ei

πs
Imτ

Im½τ̄ðMbazÞ�þ2πiβbaψba
s ðz; z̄Þ;

ψaa
s ðzþ τ; z̄þ τ̄Þ ¼ ψaa

s ðz; z̄Þ;

ψbb
s ðzþ τ; z̄þ τ̄Þ ¼ ψbb

s ðz; z̄Þ; ð2:18Þ

with the short-hand notations αab ≔ αa − αb and

βab ≔ βa − βb. We note that s shows the corresponding

two-dimensional chirality.

On T2, possible twisted orbifolding is to impose the

covariance on the fields under the rotation with the angle ω,

z → ωz, where ω is e2πi=N with N ¼ 2, 3, 4, 6. In other

words, Z2, Z3, Z4 and Z6 (twisted) orbifoldings are

realizable on T2. In non-Abelian gauge theories, a non-

trivial gauge structure part P appears in the ZN manipu-

lation as

Aμðx;ωz;ωzÞ ¼ PAμðx; z; z̄ÞP
−1; ð2:19Þ

Azðx;ωz;ωzÞ ¼ ω̄PAzðx; z; z̄ÞP
−1; ð2:20Þ

Az̄ðx;ωz;ωzÞ ¼ ωPAz̄ðx; z; z̄ÞP
−1; ð2:21Þ

λs¼þðx;ωz;ωzÞ ¼ Pλs¼þðx; z; z̄ÞP
−1; ð2:22Þ

λs¼−ðx;ωz;ωzÞ ¼ ωPλs¼−ðx; z; z̄ÞP
−1; ð2:23Þ
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where P should satisfy the conditions P ∈ UðNÞ and

PN ¼ 1N×N . Here, to prevent an additional explicit gauge

symmetry breaking via the orbifoldings, we should take

the following form in P,

P ¼

0

B
B
@

η11N1×N1
0

. .
.

0 ηn1Nn×Nn

1

C
C
A
; ð2:24Þ

with ηj ¼ f1;ω;…;ωN−1gðj ∈ 1;…; nÞ. Within the con-

crete example of UðNÞ → UðNaÞ × UðNbÞ discussed in

the previous subsection, ψaa
þ and ψbb

þ have trivial ZN parity

irrespective of the values of ηa and ηb, while ψ
ab
þ and ψba

þ

can contain nontrivial values of ηaηb, ηaηb, respectively.

The conditions for the two-dimensional gauginos with

negative chirality are evaluated with ease by use of the

relation in Eq. (2.23).

B. Yukawa coupling on magnetized T
2

Before we go for issues on magnetized T2 with orbifold-

ing, we summarize how to calculate Yukawa couplings in

which orbifolding is not imposed.

When Mab > 0, the fields ψab
þ and ψba

− contain jMabj
normalizable zero modes, while the others ψba

þ and ψab
−

have no corresponding one. On the other hand, inMab < 0,

jMabj normalizable zero modes are generated from each of

ψba
þ and ψab

− , whereas there is nothing from ψab
þ and ψba

− .

In the case of Mab ¼ 0, like ψaa
s or ψbb

s , only one

nonlocalized mode is generated from each of the all sectors

and nothing of phenomenological interest occurs. When

Mab > 0, which is equal toMba < 0, the wave functions of

ψab
þ and ψba

− take the following forms:

ψab
þ ðzÞ ¼

XjMabj−1

I¼0

�
Θ

ðIþαab;βabÞ
Mab

ðz; τÞ

0

�

;

ψba
− ðz̄Þ ¼

XjMbaj−1

I¼0

�
0

Θ
ðIþαba;βbaÞ
Mba

ðz̄; τ̄Þ

�

; ð2:25Þ

Θ
ðIþαab;βabÞ
Mab

ðz; τÞ ¼ N jMabje
iπMabz

ImðzÞ
Imτ

· ϑ

� Iþαab
Mab

−βab

�

ðMabz;MabτÞ; ð2:26Þ

Θ
ðIþαba;βbaÞ
Mba

ðz̄; τ̄Þ ¼ N jMbaje
iπMba z̄

Imðz̄Þ
Imτ̄

· ϑ

� Iþαba
Mba

−βba

�

ðMbaz̄;Mbaτ̄Þ: ð2:27Þ

Here, Ið¼ 0;…; jMabj − 1Þ discriminates the jMabj-
degenerated zero-mode states. The (generalized) ϑ function

is defined by

ϑ

�
a

b

�

ðcν; cτÞ ¼
X∞

l¼−∞

eiπðaþlÞ2cτe2πiðaþlÞðcνþbÞ; ð2:28Þ

with the properties

ϑ

�
a

b

�

ðcðνþ nÞ; cτÞ ¼ e2πiacnϑ

�
a

b

�

ðcν; cτÞ;

ϑ

�
a

b

�

ðcðνþ nτÞ; cτÞ ¼ e−iπcn
2τ−2πinðcνþbÞϑ

�
a

b

�

ðcν; cτÞ;

ϑ

�
aþm

bþ n

�

ðcν; cτÞ ¼ e2πianϑ

�
a

b

�

ðcν; cτÞ;

ϑ

�
a

b

�

ðcν; cτÞ ¼ ϑ

�
a

0

�

ðcνþ b; cτÞ; ð2:29Þ

where a and b are real numbers, c,m and n are integers, and
ν and τ are complex numbers with Imτ > 0. The following

orthonormality condition determines the normalization

factor N jMabj,

Z

T2

d2zðΘ
ðIþαab;βabÞ
Mab

ðz; τÞÞ
�
ðΘ

ðJþαab;βabÞ
Mab

ðz; τÞÞ ¼ δI;J

ðMab > 0Þ;
Z

T2

d2zðΘ
ðIþαba;βbaÞ
Mba

ðz̄; τ̄ÞÞ
�
ðΘ

ðJþαba;βbaÞ
Mba

ðz̄; τ̄ÞÞ ¼ δI;J

ðMba < 0Þ; ð2:30Þ

with d2z ≔ dzdz̄. An important relationship is easily

derived (in the case of Mab > 0),

ðΘ
ðIþαab;βabÞ
Mab

ðz; τÞÞ
�
¼ Θ

ð−Iþαba;βbaÞ
Mba

ðz̄; τ̄Þ; ð2:31Þ

where the index I is identified under the condition,

mod jMabj, and we can always redefine −I as I0ð¼ 0;…;
jMabj − 1Þ.
On a flux background, zero-mode profiles are not only

split but also localized around points different from each

other. Then we can expect that hierarchical values in

Yukawa couplings are created via overlap integrals in

the Yukawa sector of this model. The concrete form of

the Yukawa couplings is as follows,

λI;J;K ¼

Z

T2

d2zΘ
ðIþαI ;βIÞ
MI

ðz; τÞΘ
ðJþαJ ;βJÞ
MJ

ðz; τÞ

× ðΘ
ðKþαK ;βKÞ
MK

ðz; τÞÞ
�
; ð2:32Þ

where we drop a constant factor via gauge structure and the

indices I, J, K discriminate degenerated states of three

kinds of fields. Mi, αi, βi (i ¼ I, J, K) represent corre-

sponding magnetic fluxes, two kinds of Scherk-Schwarz

phases. In a suitable symmetry breaking like the above

examples, we can find conditions on the parameters,

YUKIHIRO FUJIMOTO et al. PHYSICAL REVIEW D 94, 035031 (2016)
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MI þMJ ¼ MK; ð2:33Þ

αI þ αJ ¼ αK; ð2:34Þ

βI þ βJ ¼ βK; ð2:35Þ

where we implicitly use the rule in Eq. (2.33) and the

relation in Eq. (2.31) when we write down the actual form

in Eq. (2.32).

After some mathematical calculations, we can derive the

analytical result of the Yukawa coupling in Eq. (2.32) as

λI;J;K ¼
NMI

NMJ

NMK

×
X

m∈ZMK

ϑ

�MJðIþαIÞ−MIðJþαJÞþmMIMJ

MIMJMK

0

�

ðX; YÞ

× δIþαIþJþαJþmMI ;KþαKþlMK
; ð2:36Þ

with X ≔ MIβJ −MJβI, Y ≔ τMIMJMK and possible

choices of integers l [7,72]. In other words, we consider

the Kronecker’s delta with the condition “mod jMKj.”

C. Yukawa coupling on magnetized T
2=ZN

Next we consider the case on magnetized T2=ZN . Here,

the form of the fermion wave function with the ZN parity η,

the (two-dimensional) positive chirality and the state-

discriminating index I on T2 is

ψþ;ηðzÞ ¼
XjMj−1

I¼0

ψ I
þ;ηðzÞ; ψ I

þ;ηðzÞ ¼

�
~Θ
ðIþα;βÞ
M;η ðz; τÞ

0

�

;

ð2:37Þ

where we assume thatM is a positive integer.
5
Constructing

the concrete form of ~Θ
ðIþα;βÞ
M;η ðz; τÞ itself can be done

straightforwardly just following the general recipe as
6

~Θ
ðIþα;βÞ
M;η ðz; τÞ ¼

1

N

XN−1

x¼0

ðη̄ÞxΘ
ðIþα;βÞ
M ðωxz; τÞ: ð2:38Þ

Naively, Yukawa couplings on T2=ZN seem to be formu-

lated as

~λI;J;K ¼

Z

T2

d2z ~Θ
ðIþαI ;βIÞ
MI ;ηI

ðz; τÞ ~Θ
ðJþαJ ;βJÞ
MJ ;ηJ

ðz; τÞ

× ð ~Θ
ðKþαK ;βKÞ
MK ;ηK

ðz; τÞÞ
�
; ð2:39Þ

where we find the condition on the ZN parities (via the

invariance of the system),
7

ηIηJηK ¼ 1: ð2:40Þ

However, this is not the end of the story. In general, the

kinetic terms on T2=ZN , which are described as

K
ðZN ;ηÞ
IJ ¼

Z

T2

d2zð ~Θ
ðIþα;βÞ
M;η ðz; τÞÞ

� ~Θ
ðJþα;βÞ
M;η ðz; τÞ; ð2:41Þ

are no longer diagonal, where the number of independent

physical states should be reduced as rank½K
ðZN ;ηÞ
IJ � < jMj.

Thereby, in the physical eigenstates, after considering the

correct normalization in the kinetic terms by the unitary

transformation with the corresponding diagonalizing

matrix UðZN ;ηÞ, where K
ðZN ;ηÞ
IJ is transformed as

KðZN ;ηÞ → ðUðZN ;ηÞÞ†KðZN ;ηÞUðZN ;ηÞ

¼ diagð 1;…; 1
|fflfflffl{zfflfflffl}

rank½KðZN ;ηÞ�

; 0;…; 0Þ: ð2:42Þ

The mode function on T2=ZN should be

~Θ
ðIþα;βÞ
M;η ðz; τÞ→

XjMj−1

I¼0

~Θ
ðIþα;βÞ
M;η ðz; τÞðUðZN ;ηÞÞII0 ; ð2:43Þ

where I0 is the index of physical eigenstates from zero to

rank½K
ðZN ;ηÞ
IJ � − 1. The operator formalism helps us to

evaluate explicit forms of ~λI;J;K defined in Eq. (2.39)

and the matrix UðZN ;ηÞ (see [60,72] for details.).

Taking into account the effects of the diagonalization, the

final form of the Yukawa coupling is expressed as

~λ
0
I0;J0;K0 ¼

XjMI j−1

I¼0

XjMJ j−1

J¼0

XjMK j−1

K¼0

~λI;J;KðU
ZN ;ηIÞI;I0ðU

ZN ;ηJÞJ;J0

× ðUZN ;ηK Þ�
K;K0 ; ð2:44Þ

where the indices for identifying kinetic eigenstates, I0, J0,

K0, have rank½KðZN ;ηIÞ�, rank½KðZN ;ηJÞ�, rank½KðZN ;ηKÞ� num-

bers of nonzero configurations, respectively. In general, the

mixing effect through UZN ;ηI contributes to the physics.
5
Note that the correspondence to the negative chirality case is

basically straightforward by the replacements z → z̄, τ → τ̄.
6
Indeed, we have degrees of freedom of putting any terms on

orbifold fixed points. However, for simplicity, we assume the
absence of such terms.

7
Note that a complex-conjugated state holds the corresponding

complex-conjugated ZN parity.
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D. Possible configurations of three

generations in Uð8Þ model

We focus on the following pattern of the gauge

symmetry breaking under the magnetic flux is UðNÞ →
UðNaÞ ×UðNbÞ ×UðNcÞ with N¼NaþNbþNc, where

the corresponding 1-form potential is

AðbÞðz; z̄Þ ¼
π

qImτ
× diagðMaIm½ðz̄Þdz�1Na×Na

;

MbIm½ðz̄Þdz�1Nb×Nb
;McIm½ðz̄Þdz�1Nc×Nc

Þ:

ð2:45Þ

We find six types of bifundamental matter fields under

UðNaÞ ×UðNbÞ ×UðNcÞ, λab, λbc, λca, λba, λcb, λac,

whose gauge properties are ðNa; Nb; 1Þ, ð1; Nb; NcÞ,
ðNa; 1; NcÞ, ðNa; Nb; 1Þ, ð1; Nb; NcÞ, ðNa; 1; NcÞ, respec-
tively. When we adopt the choiceNa ¼ 4,Nb ¼ 2, Nc ¼ 2,

Uð4ÞPSC ×Uð2ÞL ×Uð2ÞR gauge groups are realized from

the Uð8Þ group up to Uð1Þ factors, where the subscripts

PSC, L and R denote the Pati-Salam color, left- and

right-electroweak gauge groups,
8
respectively. In such a

situation, when the actual chirality of the gaugino is left

(negative), λab corresponds to the left-handed quarks and

leptons, and λca accords with (charge-conjugated) right-

handed quarks and leptons, respectively. When the mag-

netic fluxes are suitably assigned, the situation with three

generations is materialized. Besides, λbc plays as up-type

and down-type Higgsinos. After we assume that (four-

dimensional N ¼ 1) supersymmetry is preserved at least

locally at the ab, bc and ca sectors, the corresponding

Higgses via extra-dimensional components of the ten-

dimensional vector fields are still massless under the fluxes

and the number of the fields are the same with Higgsino

fields. Also, no tachyonic mode is expected at the tree level.

Here, in general, multiple Higgs fields appear from the bc

sector. Interestingly, when λab, λbc and λca have zero

modes, λba, λcb and λac cannot contain any zero mode,

and thus no exotic particle arises from these fermionic

sectors. In the case of the actual chirality being right

(positive), we should flip the roles of the two categories.

The Uð8Þ gauge group is the minimal group for matter

unification within the UðNÞ gauge theories.9 The following
properties are observed,

Mab þMbc þMca ¼ 0;

αab þ αbc þ αca ¼ 0;

βab þ βbc þ βca ¼ 0;

ηabηbcηca ¼ 1; ð2:46Þ

where the above parameters are defined by the fundamental

ones like Mab ¼ Ma −Mb except the ZN parities. The

ZN parities are described as ηab ¼ ηaηb, ηbc ¼ ηbηc,

ηca ¼ ηcηa.

We assume both nonvanishing magnetic fluxes and

orbifold twists. Indeed, thanks to magnetic fluxes, there

is the possibility that N ¼ 4 SUSY in four-dimensional

spacetime is broken into N ¼ 1, 2, or 0 (non-SUSY case).

Similarly, orbifold twists can break N ¼ 4 SUSY into

N ¼ 1 or 2. In this paper, we do not try to construct

concrete full setups. However, we can construct N ¼ 1

TABLE I. Numbers of possible configurations with three generations in the Z2 case. “General cases” and “Trivial

BCs only” means the cases with and without nontrivial Scherk-Schwarz phases, respectively. Corresponding

numbers of the Higgs pairs (NH) are also shown. The case indicated by 1trivial means the one Higgs pair appears

under the nonmagnetized background in the bc sector.

General cases Trivial BCs only

Mab;Mca < 0 Mab < 0, Mca > 0 Mab;Mca < 0 Mab < 0, Mca > 0

41ðNH ¼ 5Þ 16ðNH ¼ 1trivialÞ 5ðNH ¼ 5Þ 4ðNH ¼ 1trivialÞ
56ðNH ¼ 6Þ 65ðNH ¼ 1Þ 2ðNH ¼ 6Þ 5ðNH ¼ 1Þ
30ðNH ¼ 7Þ
8ðNH ¼ 8Þ 2ðNH ¼ 8Þ
1ðNH ¼ 9Þ 1ðNH ¼ 9Þ
136þ 81 ¼ 217 in total 10þ 9 ¼ 19 in total

8
From a phenomenological point of view, we can consider

the following additional breakdowns originating from flux,
Uð4ÞPSC → Uð3ÞC ×Uð1Þ1 and Uð2ÞR → Uð1Þ2 × Uð1Þ3 (up
to Uð1Þ factors), where Uð3ÞC is the color gauge group (up to
a Uð1Þ factor). Under the latter breaking, the up-type and down-
type Higgsino/Higgs sectors can feel different magnetic fluxes
individually. Consequently, the numbers of the two types of fields
diverge. Some of the combinations of the Uð1Þ part would be
anomalous. Then they could be massive and decoupled via the
Green-Schwarz mechanism.

9
In the previous models [10,11], flavor structures among

quarks and leptons are characterized only on two dimensions
of the six-dimensional compact space. In this paper, we focus on
a two-dimensional toroidal orbifold, and our setup is expected
to be embedded in SOð32Þ SYM theory and six-dimensional/
ten-dimensional other theories with UðNÞ groups.
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SUSY models by selecting magnetic fluxes and orbifold

twists suitably.
10

All the possible configurations with three generations

which fulfill the conditions in Eq. (2.46) were derived in

Ref. [72].
11

Note that the constraints αi ¼ βiði ¼
ab; bc; caÞ are requested by symmetry in the cases of

T2=Z3;4;6. We note that the first line of Eq. (2.46) tells us

that at least one of the signs of the three fluxes should be

different from the others, and it is enough that we focus on

the two possibilities in the signs of the fluxes of the matter

sectors Mab and Mca as

Mab < 0; Mca < 0; Mab < 0; Mca > 0:

ð2:47Þ

There is another possibility of Mab > 0, Mca < 0, but this

case is physically the same as Mab < 0, Mca > 0. Besides,

after ignoring the difference coming from the combina-

torics, we can introduce the additional condition,

jMabj ≤ jMcaj: ð2:48Þ

Results of classification are shown in Tables I (Z2), II (Z3),

III (Z4), IV (Z6), respectively.

III. RESULTS

Now we know that possible numbers of SUð2ÞL doublet

Higgs boson pairs for up-type and down-type fields under

TABLE II. Numbers of possible configurations with three generations in the Z3 case. The convention is the same

in Table I.

General cases Trivial BCs only

Mab;Mca < 0 Mab < 0, Mca > 0 Mab;Mca < 0 Mab < 0, Mca > 0

11ðNH ¼ 4Þ 17ðNH ¼ 1trivialÞ 1ðNH ¼ 4Þ 9ðNH ¼ 1trivialÞ
83ðNH ¼ 5Þ 142ðNH ¼ 1Þ 6ðNH ¼ 5Þ 27ðNH ¼ 1Þ
190ðNH ¼ 6Þ 21ðNH ¼ 2Þ 7ðNH ¼ 6Þ
83ðNH ¼ 7Þ 6ðNH ¼ 7Þ
11ðNH ¼ 8Þ 1ðNH ¼ 8Þ
378þ 180 ¼ 558 in total 21þ 36 ¼ 57 in total

TABLE III. Numbers of possible configurations with three generations in Z4 case. The convention is the same in

Table I.

General cases Trivial BCs only

Mab;Mca < 0 Mab < 0, Mca > 0 Mab;Mca < 0 Mab < 0, Mca > 0

9ðNH ¼ 4Þ 24ðNH ¼ 1trivialÞ 3ðNH ¼ 4Þ 12ðNH ¼ 1trivialÞ
128ðNH ¼ 5Þ 228ðNH ¼ 1Þ 37ðNH ¼ 5Þ 60ðNH ¼ 1Þ
254ðNH ¼ 6Þ 18ðNH ¼ 2Þ 59ðNH ¼ 6Þ 6ðNH ¼ 2Þ
120ðNH ¼ 7Þ 27ðNH ¼ 7Þ
17ðNH ¼ 8Þ 10ðNH ¼ 8Þ
528þ 270 ¼ 798 in total 136þ 78 ¼ 214 in total

TABLE IV. Numbers of possible configurations with three generations in Z6 case. The convention is the same in

Table I.

General cases Trivial BCs only

Mab;Mca < 0 Mab < 0, Mca > 0 Mab;Mca < 0 Mab < 0, Mca > 0

14ðNH ¼ 4Þ 24ðNH ¼ 1trivialÞ 4ðNH ¼ 4Þ 12ðNH ¼ 1trivialÞ
156ðNH ¼ 5Þ 282ðNH ¼ 1Þ 45ðNH ¼ 5Þ 73ðNH ¼ 1Þ
326ðNH ¼ 6Þ 27ðNH ¼ 2Þ 76ðNH ¼ 6Þ 8ðNH ¼ 2Þ
150ðNH ¼ 7Þ 36ðNH ¼ 7Þ
20ðNH ¼ 8Þ 10ðNH ¼ 8Þ
666þ 333 ¼ 999 in total 171þ 93 ¼ 264 in total

10
In order to realize N ¼ 1 SUSY models, we need to

appropriately assign magnetic fluxes and/or boundary conditions
of orbifolding. See, e.g., Ref. [10].

11
In our setup, R-parity-violating terms are prohibited by Pati-

Salam and/or U(1) gauge symmetries. For a review, see Ref. [10].

COMPREHENSIVE ANALYSIS OF YUKAWA HIERARCHIES … PHYSICAL REVIEW D 94, 035031 (2016)

035031-7



the presence of magnetic fluxes are one or two (when

Mab < 0, Mca > 0) or from four to eight (when Mab < 0,

Mca < 0), respectively. In the latter case, it had been

investigated that when a suitable relation was fulfilled

among the VEVs of the Higgs bosons, the so-called

Gaussian Frogatt-Nielsen mechanism works and observed

quark mass hierarchies and mixing angles are realized [11].

On the other hand, such cases are less predictive in the

sense that various additional parameters with respect to

scalar VEVs are required.

The situation in the former case is just the opposite.

Here, only lower numbers of VEVs contribute to Yukawa

hierarchies and are then more predictive, whereas less

degrees of freedom can be used for realizations of the quark

and lepton configurations in the SM. In this work, we only

focus on the magnitude of realized fermion mass hierar-

chies in the former case to declare prospects in such simple

possibilities exhaustively. We comment on the total num-

bers of configurations found in panels in Figs. 1–5 are in

general less than the numbers of corresponding allowed

configurations shown in Tables I–IV. This is because part

of configurations in Tables I–IV results in mass matrices

with rank reduction (less than three), where such cases

are apparently not suitable and skipped to be shown. The

cancellations after summing up all the indices in Eq. (2.44)

are a possible origin of this reduction.

A. One Higgs (pair) case

At first, we consider the case with one Higgs pair.

We note that except for T2=Z2, the modulus parameter

is inevitably fixed by requirement in ZNðN ¼ 3; 4; 6Þ

orbifolds as τ ¼ e2πi=N . In other words, one additional

parameter exists only in T2=Z2, where the magnitude of τ

determines the degrees of quasilocalization of the mode

functions.

In Fig. 1, distributions of realized mass eigenvalues are

shown in T2=Z2 when one Higgs boson appears in the three

choices of the modulus parameter τ ¼ i (left panel), 5i
(center panel), 10i (right panel). Here, the orange (blue)

bars correspond to the mass ratio m1=m3 (m2=m3) under

the ordering m1 ≤ m2 ≤ m3. Digits on top of bars indicate

how many configurations are stored in corresponding

regions of m1=m3 or m2=m3. Our result is consistent with

FIG. 2. Distributions of realized mass eigenvalues are shown when one Higgs boson appears in the cases of

T2=Z3ðleft panelÞ; T
2=Z4ðcenter panelÞ; T

2=Z6ðright panelÞ. The orange (blue) bars correspond to the mass ratio m1=m3 (m2=m3)

under the ordering m1 ≤ m2 ≤ m3. The total numbers of the possibilities with three generations are 78ðT2=Z3Þ, 144ðT2=Z4Þ,
135ðT2=Z6Þ, respectively.

FIG. 1. Distributions of realized mass eigenvalues are shown in T2=Z2 when one Higgs boson appears in the three choices of the

modulus parameter τ ¼ i (left panel), 5i (center panel), 10i (right panel). The orange (blue) bars correspond to the mass ratio m1=m3

(m2=m3) under the ordering m1 ≤ m2 ≤ m3. The total number of the possibilities with three generations is 65 (in each panel).
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those in the previous studies, e.g., in [72–74]. When we

take Im½τ� as greater than around ten, the hierarchy of 10−5

is realizable in m1=m3. Then we can realize the mass

difference between the up quark and the top quark in this

class by choosing the value of Im½τ� as ten or a bit more.

In Fig. 2, counterparts are depicted when one Higgs

boson appears in the cases of T2=Z3 (left panel), T2=Z4

(center panel), T2=Z6 (right panel). Conventions are the

same as those in Fig. 1. Note that no additional parameters

are there in these cases and then possibilities with one

Higgs pair on T2=Z3;4;6 are completed in the figures.

Unfortunately, the minima of m1=m3 are around 5×10−2

(for T2=Z3;4) and 1 × 10−3 (for T2=Z6), where they are far

from the target 10−5. Thereby, the simplest case in the

number of realized Higgs pairs (NH ¼ 1) is discarded on

T2=Z3;4;6 completely as candidates for describing the SM

fermion sector. Such a tendency is understandable via the

formula in Eq. (2.44). Different from the Z2 case, in more

than the Z3 cases, the structure of the kinetic mixing

described by the unitary matrix UZN ;η becomes nontrivial

and such mixings tend to smear the difference in the

original T2 basis, where at this stage, large hierarchies are

expected since the magnitude of magnetic fluxes is larger

compared with when the geometry is T2=Z2 or the simple

T2. In the case of Z6, the highest magnitudes in magnetic

fluxes are realized, where a bit more hierarchy is expected

in spite of the smearing through the kinetic mixing. This

would be the origin of why the minimum of m1=m3 is a bit

smaller on T2=Z6 than on T2=Z3;4. Note that a similar

conclusion was made in Ref. [75].

B. Two Higgs (pair) case

Next, we go for the case with two Higgs pairs (NH ¼ 2),

where two Higgs VEVs contribute to ratios of mass

eigenvalues. As far as we focus on the ratios of mass

FIG. 3. Distributions of realized mass eigenvalues are shown when two Higgs bosons appear in the cases of T2=Z3. We analyze all the

cases (nine patterns in total) where rank-three mass matrices are realized. Configurations are summarized as fMab; αab; sabg,

fMca; αca; scag, fMbc; αbc; sbcg, where we define ηab ≡ e2πisab=3. The same holds for the bc and ca sectors. The orange (blue) dots

correspond to the mass ratio m1=m3 (m2=m3) under the ordering m1 ≤ m2 ≤ m3.
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eigenvalues, only the ratio of the two VEVs v1=v2 [v1;2
corresponding to J0 ¼ 0, 1 in Eq. (2.44)] is relevant.

12

We find that nine, six and seven configurations generate

rank-three mass matrices on T2=Z3, T
2=Z4 and T2=Z6,

respectively. In each case, we examine patterns of m1=m3

and m2=m3 by plotting the ratios in various choices of

v1=v2. Note that no NH ¼ 2 example exists when the

background is T2=Z2 as explicitly shown in Table I.

The results are summarized in Figs. 3 ðT2=Z3Þ, 4

ðT2=Z4Þ and 5 ðT2=Z6Þ, where intervals of dots (showing

choices of v1=v2) are 0.001 from 0.001 to 1, and 0.1 from 1

to 1000, respectively. Note that in the region where v1=v2 is
more than 1000 or less than 0.001, either of the two mass

matrices dominates and the two mass ratios are saturated.

Roughly speaking, the minimum values of m1=m3 among

possible configurations are around 5 × 10−2 for T2=Z3 and

5 × 10−3 for T2=Z4;6, which are, of course, far from the

required value 10−5. Then, we conclude that it is hard to

realize the ratio mup=mtop in every possibility with two

Higgs pairs without fine-tuning in v1=v2. Possibility would
still remain when we accept fine-tuning in the ratio even

through it is, at least to some extent, contradict to the basic

motivation for considering such magnetized backgrounds

in extra dimensions.
13
However, if the mass hierarchy itself

can become achievable under fine-tuning, we should justify

the origin by dynamics.

We point out that the realized spectra are nonlinearly

changed when we adjust the value of v1=v2. Especially
around v1=v2 ¼ 1, values of m1=m3 and m2=m3 alter

significantly since elements of two mass matrices are

comparable due to the mixing effect. As an example,

we show explicit forms of two mass matrices in T2=Z6

with quantum numbers fMab; αab; sabg, fMca; αca; scag,
fMbc; αbc; sbcg ¼ f−15; 1=2; 0g; f24; 0; 5g; f−9; 1=2; 1g:

M1 ¼ v1

0

B
@

−0.204991 − 0.0796877i 0.00942303þ 0.09068i 0.0519518þ 0.0517703i

0.0763198þ 0.0222452i −0.00676905 − 0.017782i −0.0077252 − 0.00374813i

−0.0507492 − 0.0180038i 0.0683165þ 0.0433135i −0.0157981 − 0.12252i

1

C
A; ð3:1Þ

FIG. 4. Distributions of realized mass eigenvalues are shown when two Higgs bosons appear in the cases of T2=Z4. We analyze all the

cases (six patterns in total) that rank-three mass matrices are realized. Configurations are summarized as fMab; αab; sabg,

fMca; αca; scag, fMbc; αbc; sbcg, where we define ηab ≡ e2πisab=4. The same holds for the bc and ca sectors. Conventions are the

same as those adopted in Fig. 3.

13
In NH ¼ 5, the authors of [11] found a configuration where all of the VEV ratios are within a natural range [0.1, 10].

12
We may suffer from large flavor-changing neutral currents (FCNCs) because two or more than two Higgs doublets emerge unless

only one pair of Higgs doublets stays in the electroweak scale, while the others are decoupled. Even if sufficient Yukawa hierarchies are
realized in our setup, we have to assume the Higgs sector including a specific Higgs mass matrix that can provide a light mass eigenstate
and sufficiently heavy mass eigenstates of Higgs doublets for evading the FCNC effects. Also, it is still a challenging issue to obtain such
a Higgs sector.
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M2 ¼ v2

0

B
@

0.00505039þ 0.0102538i 0.00941751 − 0.180948i −0.0776918 − 0.115464i

−0.00982989 − 0.00704602i 0.00161259þ 0.0544036i 0.0166123þ 0.0174854i

0.0133678 − 0.0127981i 0.0383659 − 0.114777i −0.00590916þ 0.172257i

1

C
A: ð3:2Þ

Here, we define Z6 parity, ηab ≡ e2πisab=6. The same holds

for the bc and ca sectors. Note that elements in the mass

matrix (3.1) as well as (3.2) have no strong hierarchy.
14

That is due to the effects of kinetic mixing, which

smears hierarchies. Obviously, the mass matrix (3.1) [(3.2)]

is dominant when v1 ≫ v2 [v1 ≪ v2]. However, when

v1 ∼ v2, partial cancellations happen sizably in the calcu-

lation of mass eigenvalues and the ratiom1=m3 drops below

0.005 as shown in Fig. 5. The relatively hierarchical nature

in T2=Z4;6 compared with T2=Z3 would originate from the

relatively large magnitude of magnetic fluxes.

IV. CONCLUSIONS

In this paper, we discussed how large mass hierarchy is

realized on the magnetized extra dimension with orbifold-

ing of T2=Z2, T
2=Z3, T

2=Z4 and T2=Z6. We calculated

realized mass eigenvalues in all the possibilities that predict

three generations in zero mode fermions with one and two

pairs of SUð2ÞL Higgs doublets (for up-type and down-type
fermions). In T2=Z3;4;6, the effect of the kinetic mixings is

nontrivial in the Yukawa calculation in Eq. (2.44) since it

FIG. 5. Distributions of realized mass eigenvalues are shown when two Higgs bosons appear in the cases of T2=Z6. We analyze all the

cases (seven patterns in total) that rank-three mass matrices are realized. Configurations are summarized as fMab; αab; sabg,

fMca; αca; scag, fMbc; αbc; sbcg, where we define ηab ≡ e2πisab=6. The same holds for the bc and ca sectors. Conventions are the same as

those adopted in Fig. 3.

14
For simplicity in the calculation, we ignore the overall

normalization factor ðNMI
NMJ

=NMK
Þ in Eq. (2.36), which

manifestly does not affect the mass ratios.
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smears hierarchies in the mass matrices. This feature brings

us to the conclusion that it is very difficult to realize the

mass ratio among the up quark and the top quark

mup=mtop ∼ 10−5 in all the configurations with one

Higgs pair and with two Higgs pairs. In the two Higgs

cases, interference effects among two mass matrices are

maximized at around v1=v2 ¼ 1 because elements of two

matrices are comparable due to the mixing effect.

Situations would be the same when more Higgs doublets

are realized on T2=Z3;4;6 where kinetic mixing smearing

hierarchies would prevent a large mass difference like

mup=mtop ∼ 10−5. Such obstacles are absent on T2 and

T2=Z2. This information is very useful when we try to

construct an actual model on magnetized extra dimensions.
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