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1 Introduction

In the literature, non-Hermitian Hamiltonians have received attention [1] from time

to time because of their potential applications in scattering problems. Lately, a

subclass of such Hamiltonians, containing operators invariant under joint actions of

parity (P: x → −x) and time reversal (T: i → −i), has become a subject matter

of considerable research interest [2]–[17]. An important reason for this is that PT

invariance, in a number of cases, leads to energy eigenvalues that are real. Moreover,

PT-invariant models share with the usual Hermitian ones many of the features that

the latter admit of: namely, supersymmetrization [5, 6, 7], potential algebra [12, 15],

quasi-solvability [3, 8, 11, 14], etc.

Recently, Znojil [9], by employing a simple complex shift of coordinate, pointed

out that the PT-symmetric harmonic oscillator potential possesses two series of

energy levels distinguishable by a quasi-parity parameter. Subsequently, we have

also found [12] in an sl(2, C) group theoretical context, that paired real energy

levels exist for a PT-symmetric generalized Pöschl-Teller potential. The complexified

Scarf II potential, which is also PT symmetric and emerges from the same sl(2, C)

algebra, displays a double tower of real energy levels as well.

The purpose of this paper is to bring together these potentials within the frame-

work of an order-two parasupersymmetric (PSUSY) scheme and consequently inter-

pret them in a second-derivative supersymmetric (SSUSY) setting. In the Hermitian

context, both the procedures admit of two superpotentials. By complexifying them,

we show that all the three potentials mentioned above come under the purview of

PSUSY and SSUSY. In this way we establish that both PSUSY and SSUSY appear

to be the most natural choice for describing occurrences of a double series of energy

levels.

2 In pursuit of a complexified PSUSY
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2.1 Underlying ideas of SUSY and PSUSY

The basic principles of SUSY [18, 19] and PSUSY [20, 21] in quantum mechan-

ics (QM) are well known. In SUSYQM, the governing Hamiltonian is written in

terms of a pair of supercharges Q and Q̄, namely

Hs = QQ̄ + Q̄Q. (2.1)

These supercharges are nilpotent and commute with Hs:

Q2 = Q̄2 = 0, [Hs, Q] = [Hs, Q̄] = 0. (2.2)

The key role of Q (Q̄) is that it operates on a bosonic state to transform it into a

fermionic one and vice versa.

In the minimal version of SUSY [22], Q and Q̄ are generally assumed to be

represented by Q = Aσ−, Q̄ = Āσ+, where A and Ā are taken to be first-derivative

differential operators. So one works with

Q =

(

0 0
A 0

)

, Q̄ =

(

0 Ā
0 0

)

, (2.3)

A =
d

dx
+W (x), Ā = −

d

dx
+W (x), (2.4)

where W (x) is the so-called superpotential. It is obvious from the above represen-

tations of Q and Q̄ that Hs appears diagonal:

Hs =

(

H+ 0
0 H−

)

. (2.5)

We can actually express H+ and H− in factorized forms in terms of A and Ā,

H+ = ĀA = −
d2

dx2
+ V+(x)− E, H− = AĀ = −

d2

dx2
+ V−(x)−E, (2.6)

at some arbitrary factorization energy E. In (2.6), V±(x) are

V±(x) = W 2(x)∓
dW (x)

dx
+ E. (2.7)

It may be noticed that the spectrum of Hs is doubly degenerate except possibly

for the ground state. In the exact SUSY case to which we shall restrict ourselves here,
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the ground state at vanishing energy is nondegenerate. In the present notational

set-up, it belongs to the H+ component. Note that the double degeneracy of Hs is

also implied by the intertwining relationships, which read

AH+ = H−A, H+Ā = ĀH−. (2.8)

Relations (2.8) are indeed consistent with the definitions (2.6).

PSUSY of order two (p = 2), on the other hand, arises by imposing a symmetry

between the standard bosonic and parafermionic states. As introduced by Rubakov

and Spiridonov [20], the p = 2 PSUSY Hamiltonian Hps is defined to obey the

relations

Q3 = 0, Q2Q̄+QQ̄Q+ Q̄Q2 = 2QHps, [Hps, Q] = 0, (2.9)

along with their Hermitian conjugates.

In parallel to (2.3), the parasupercharges Q and Q̄ can be assigned a matrix

representation in a manner

(Q)ij =

[

d

dx
+Wj(x)

]

δi,j+1, (Q̄)ij =

[

−
d

dx
+Wi(x)

]

δi+1,j, i, j = 1, 2, 3.

(2.10)

These read explicitly

Q =







0 0 0
A1 0 0
0 A2 0





 , Q̄ =







0 Ā1 0
0 0 Ā2

0 0 0





 , (2.11)

with

Ai =
d

dx
+Wi(x), Āi = −

d

dx
+Wi(x), i = 1, 2. (2.12)

The PSUSY algebra (2.9) then leads to a diagonal form for Hps,

Hps =







H1 0 0
0 H2 0
0 0 H3





 , (2.13)

provided

A1Ā1 = Ā2A2 − c, (2.14)
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where c is a constant. Translated in terms of the superpotentials, Eq. (2.14) expands

to

W 2
2 −W 2

1 −
dW1

dx
−
dW2

dx
= c. (2.15)

We thus have for H1, H2, and H3,

H1 = Ā1A1 + c1,

H2 = A1Ā1 + c1 = Ā2A2 + c2,

H3 = A2Ā2 + c2, (2.16)

where the constants c1 and c2 satisfy c1 + c2 = 0 and c1 − c2 = c.

In summary, it is clear that whereas SUSY involves a single superpotentialW (x),

PSUSY is described by two superpotentials W1(x) and W2(x). We now turn to the

case of the PT-symmetric harmonic oscillator potential for a PSUSY analysis.

2.2 PT-symmetric oscillator potential

The Hamiltonian [9]

H(α) = −
d2

dx2
+ (x− iδ)2 +

α2 − 1
4

(x− iδ)2
, α > 0, (2.17)

is easily seen to be PT symmetric: it can be obtained from the usual three-

dimensional radial harmonic oscillator Hamiltonian by effecting a complex shift of

coordinate x→ x− iδ, δ > 0. The operator H(α) is beset with a centrifugal-like core

of strength G = α2 − 1
4
; nonetheless, the model proves to be exactly solvable on the

entire real line for any α > 0 like the linear harmonic oscillator (corresponding to

α = 1/2). Contrary to the latter, however, it has an unequal spectrum,

E(α)
qn = 4n+ 2− 2qα, n = 0, 1, 2, . . . , (2.18)

if α is not integer, which we shall assume here. In (2.18), q = ±1 denotes the

quasi-even (+) or quasi-odd (−) parity for the corresponding state. The accompa-

nying eigenfunctions are expressible in terms of the standard orthogonal Laguerre

polynomials:

ψ(α)
qn (x) ∝ e−

1

2
(x−iδ)2(x− iδ)−qα+ 1

2L(−qα)
n [(x− iδ)2]. (2.19)
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Before taking up the PSUSY study, it is interesting to discuss some of the SUSY

aspects of H(α). We see from (2.6) and (2.7) that there can be two independenta

forms of the complex superpotentials associated with H(α). These are

W (α)(x) = x− iδ +
α− 1

2

x− iδ
, E = 2− 2α, (2.20)

W ′(α)(x) = x− iδ −
α + 1

2

x− iδ
, E ′ = 2 + 2α. (2.21)

In (2.20) and (2.21), E and E ′ stand for the corresponding factorization energies.

Let us consider W (α)(x) first. Using (2.6) and (2.7), it follows readily that

V
(α)
+ (x) = V (α)(x), V

(α)
− (x) = V (α−1)(x) + 2, (2.22)

where α > 1 and V (α)(x) represents the potential in (2.17). Thus the partner

Hamiltonians H
(α)
± acquire the forms

H
(α)
+ = H(α) − 2 + 2α, H

(α)
− = H(α−1) + 2α. (2.23)

Further, using the definitions A = d
dx

+W (α)(x) and Ā = − d
dx

+W (α)(x), it is

straightforward to verify that the operator A annihilates the ground state ψ
(α)
+0 :

Aψ
(α)
+0 (x) ∝

(

d

dx
+ x− iδ +

α− 1
2

x− iδ

)

e−
1

2
(x−iδ)2(x− iδ)−α+ 1

2 = 0. (2.24)

So the spectra of H+ and H− read

Spectrum of H
(α)
+ : E

(α)
+n − 2 + 2α = 4n,

E
(α)
−n − 2 + 2α = 4n+ 4α, (2.25)

Spectrum of H
(α)
− : E

(α−1)
+n + 2α = 4n+ 4,

E
(α−1)
−n + 2α = 4n+ 4α. (2.26)

aWe can think of additional supersymmetries resulting from the choices

W ′′(α)(x) = x− iδ +
α+ 1

2

x− iδ
, E′′ = −2α,

W ′′′(α)(x) = x− iδ −
α− 1

2

x− iδ
, E′′′ = 2α,

where E′′ and E′′′ are the factorization energies. However, these supersymmetries are not new in
that they can be obtained from W (α)(x) and W ′(α)(x) by the replacement α → α+1 or α → α−1.

6



If however we consider W ′α(x) along with E ′ given by (2.21), then V
′(α)
+ (x) and

V
′(α)
− (x) become

V
′(α)
+ (x) = V (α)(x), V

′(α)
− (x) = V (α+1)(x) + 2. (2.27)

As such the corresponding component Hamiltonians H
′(α)
+ and H

′(α)
− turn out to be

H
′(α)
+ = H(α) − 2− 2α, H

′(α)
− = H(α+1) − 2α. (2.28)

The role of W ′(α)(x) is, however, quite different from W (α)(x): it is the excited

state ψ
(α)
−0 that is annihilated by A′ (≡ d

dx
+W ′(α)(x)):

A′ψ
(α)
−0 (x) ∝

(

d

dx
+ x− iδ −

α + 1
2

x− iδ

)

e−
1

2
(x−iδ)2(x− iδ)α+

1

2 = 0. (2.29)

As a result, the spectra of H
′(α)
+ and H

′(α)
− look much different from those in (2.25)

and (2.26):

Spectrum of H
′(α)
+ : E

(α)
+n − 2− 2α = 4n− 4α,

E
(α)
−n − 2− 2α = 4n, (2.30)

Spectrum of H
′(α)
− : E

(α+1)
+n − 2α = 4n− 4α,

E
(α+1)
−n − 2α = 4n+ 4. (2.31)

With this background, we now proceed to discuss the PSUSY of the PT-

symmetric oscillator Hamiltonian (2.17). Introducing a pair of complex superpo-

tentials W1(x) = W (α)(x) and W2(x) = W ′(α−1)(x) and taking c1 = −c2 = −2α, we

at once obtain from (2.16) the results:

H1 = H
(α)
+ − 2α = H(α) − 2, H2 = H

(α)
− − 2α = H(α−1), H3 = H(α) + 2.

(2.32)

We are therefore led to the following PSUSY spectrum pattern:

Spectrum of H1: E
(α)
+n − 2 = 4n− 2α,

E
(α)
−n − 2 = 4n+ 2α, (2.33)
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Spectrum of H2: E
(α−1)
+n = 4n− 2α + 4,

E
(α−1)
−n = 4n + 2α, (2.34)

Spectrum of H3: E
(α)
+n + 2 = 4n− 2α + 4,

E
(α)
−n + 2 = 4n+ 2α + 4. (2.35)

As a consequence of Eqs. (2.33)–(2.35), the spectrum of Hps shows the features

summarized below: if N − 1 < α < N , where N ∈ {2, 3, . . .}, then

E0 = −2α, E1 = −2α + 4, . . . , EN−1 = −2α + 4N − 4, EN = 2α,

EN+1 = −2α + 4N, EN+2 = 2α + 4, . . . , EN+2m = 2α + 4m,

EN+2m+1 = −2α + 4N + 4m, . . . , (2.36)

with degeneracies

d0 = 1, d1 = 3, . . . , dN−1 = 3, dN = 2, dN+1 = 3, dN+2 = 3, . . . ,

dN+2m = 3, dN+2m+1 = 3, . . . . (2.37)

In the Hermitian case, the spectrum of Hps is known to be always three-fold

degenerate at least starting from the second and higher excited states. From (2.37),

we see that this is not true here. Note that H3 is essentially a shifted H1 and that

the ground state is nondegenerate.

We now remark on the other possibility when we can identify W ′

1(x) =W ′(α)(x)

and W ′

2(x) =W (α+1)(x) with c′1 = −c′2 = 2α. We obtain as a result

H ′

1 = H
′(α)
+ + 2α = H(α) − 2, H ′

2 = H
′(α)
− + 2α = H(α+1), H ′

3 = H(α) + 2.

(2.38)

The respective spectra of H ′

1, H
′

2, and H
′

3 are then

Spectrum of H ′

1: E
(α)
+n − 2 = 4n− 2α,

E
(α)
−n − 2 = 4n+ 2α, (2.39)

Spectrum of H ′

2: E
(α+1)
+n = 4n− 2α,

E
(α+1)
−n = 4n + 2α+ 4, (2.40)

Spectrum of H ′

3: E
(α)
+n + 2 = 4n− 2α + 4,

E
(α)
−n + 2 = 4n+ 2α + 4. (2.41)
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These yield the following spectrum of Hps: if N − 1 < α < N , where N ∈

{1, 2, . . .}, then

E0 = −2α, E1 = −2α + 4, . . . , EN−1 = −2α + 4N − 4, EN = 2α,

EN+1 = −2α + 4N, EN+2 = 2α + 4, . . . , EN+2m = 2α + 4m,

EN+2m+1 = −2α + 4N + 4m, . . . , (2.42)

with degeneracies

d0 = 2, d1 = 3, . . . , dN−1 = 3, dN = 1, dN+1 = 3, dN+2 = 3, . . . ,

dN+2m = 3, dN+2m+1 = 3, . . . . (2.43)

In contrast to the previous case, here the ground state is doubly degenerate.

However, similar to what we obtained before, the nature of degeneracies is not of

the usual Hermitian type. Note that H3 is again a shifted H1. We therefore conclude

that to get a shifted PT-symmetric oscillator, one has to resort to a complexified

PSUSY of order two, contrary to what happens for the standard harmonic oscillator

case where such a result is obtained in SUSYQM.

In the limiting cases where α becomes some integer N , the spectrum of H(α)

becomes equidistant and the need for quasi-parity disappears due to the phenomenon

of unavoided level crossings without degeneracy [9]. We then recover a degeneracy

pattern of the usual Hermitian type for the spectrum of Hps, namely

d0 = 1, d1 = 3, . . . , dN−1 = 3, dN = 3, dN+1 = 3, dN+2 = 3, . . . , (2.44)

or

d0 = 2, d1 = 3, . . . , dN−1 = 3, dN = 3, dN+1 = 3, dN+2 = 3, . . . , (2.45)

for the choice (2.32) or (2.38), respectively. In both cases, the spectrum of Hps is

the same:

E0 = −2N, E1 = −2N + 4, . . . , EN−1 = 2N − 4, EN = 2N,

EN+1 = 2N + 4, EN+2 = 2N + 8, . . . , (2.46)

but for the former choice, N is restricted to the set {2, 3, 4, . . .}, while for the latter

it may take any value in {1, 2, 3, . . .}.
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2.3 PT-symmetric generalized Pöschl-Teller potential

The Hamiltonian for the PT-symmetric generalized Pöschl-Teller system is given

by [12]

H(A,B) = −
d2

dx2
+[B2+A(A+1)] cosech2 τ−B(2A+1) cosech τ coth τ, τ = x−iγ,

(2.47)

where −π
4
≤ γ < 0 or 0 < γ < π

4
, B > A + 1

2
> 0, and A + 1

2
and B do not differ

by an integer. Note that H(A,B) is invariant under the replacements
(

A+ 1
2
, B
)

→
(

B,A+ 1
2

)

.

We have recently shown [12], using sl(2,C) as a tool, that the PT-symmetric

Hamiltonian H(A,B) possesses two series of real energy eigenvalues according to

E
(A,B)
+n = −

(

B − 1
2
− n

)2
, n = 0, 1, . . . , n+max,

B − 3
2
≤ n+max < B − 1

2
, (2.48)

E
(A,B)
−n = − (A− n)2 , n = 0, 1, . . . , n−max,

A− 1 ≤ n−max < A, (2.49)

where B > 1
2
and A > 0. Note that while the real counterpart of (2.47), obtained

by setting γ = 0, is singular and so calls for its restriction to the half-line (0,+∞),

the complexified potential as given above gets regularized on performing the shift

x → x − iγ and so may be considered on the entire real line. Note also that the

coupling constants appearing in H(A,B) are all real.

Corresponding to the two series of energy levels (2.48) and (2.49), the eigenfunc-

tions read

ψ
(A,B)
+n ∝ (y − 1)(A−B+1)/2(y + 1)−(A+B)/2P

(A−B+ 1

2
,−A−B−

1

2
)

n (y), (2.50)

ψ
(A,B)
−n ∝ (y − 1)(B−A)/2(y + 1)−(B+A)/2P

(B−A−
1

2
,−B−A−

1

2
)

n (y), (2.51)

where y = cosh τ and P (α,β)
n (y) is a Jacobi polynomial.
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Carrying out a standard SUSYQM analysis, we get for A = d
dx

+W (A,B)(x) and

Ā = − d
dx

+W (A,B)(x) the partner Hamiltonians

H
(A,B)
+ = ĀA = −

d2

dx2
+ V

(A,B)
+ (x)− E,

H
(A,B)
− = AĀ = −

d2

dx2
+ V

(A,B)
− (x)− E, (2.52)

where V
(A,B)
± (x) are related to W (A,B)(x) as defined in (2.7). The superpotential

W (A,B) is given by

W (A,B)(x) =
(

B − 1
2

)

coth τ −
(

A+ 1
2

)

cosech τ, E = −
(

B − 1
2

)2
, (2.53)

E being the factorization energy.

It is simple to work out

V
(A,B)
+ (x) = V (A,B)(x), V

(A,B)
− (x) = V (A,B−1)(x), (2.54)

where V (A,B) is the potential in (2.47). Relations (2.54) imply as a consequence

H
(A,B)
+ = H(A,B) +

(

B − 1
2

)2
, H

(A,B)
− = H(A,B−1) +

(

B − 1
2

)2
. (2.55)

The nondegenerate ground state ψ
(A,B)
+0 is easily seen to be annihilated by the

operator A:

Aψ
(A,B)
+0 ∝

[

d

dx
+
(

B −
1

2

)

coth τ −
(

A+
1

2

)

cosech τ

]

(y − 1)(A−B+1)/2

× (y + 1)−(A+B)/2

∝ (sinh τ)−1

[

(

y2 − 1
) d

dy
+
(

B −
1

2

)

y −
(

A +
1

2

)

]

(y − 1)(A−B+1)/2

× (y + 1)−(A+B)/2

= 0, (2.56)

resulting in the following spectra of H
(A,B)
± :

Spectrum of H
(A,B)
+ : E

(A,B)
+n +

(

B − 1
2

)2
= n(2B − n− 1),

E
(A,B)
−n +

(

B − 1
2

)2
=
(

B −A + n− 1
2

)

×
(

B + A− n− 1
2

)

, (2.57)

Spectrum of H
(A,B)
− : E

(A,B−1)
+n +

(

B − 1
2

)2
= (n+ 1)(2B − n− 2),

E
(A,B−1)
−n +

(

B − 1
2

)2
=
(

B − A+ n− 1
2

)

×
(

B + A− n− 1
2

)

. (2.58)
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Clearly from (2.57) and (2.58) we get the usual picture of unbroken SUSY.

Since the potential V (A,B)(x) is invariant under A+ 1
2
↔ B, we may as well have

a second choice of the superpotential given by

W ′(A,B)(x) = A coth τ − B cosech τ, E ′ = −A2, (2.59)

where E ′ is the factorization energy. In this case, the wave function ψ
(A,B)
−0 is an-

nihilated by the operator A′, showing that an excited state at vanishing energy is

suppressed:

Spectrum of H
′(A,B)
+ : E

(A,B)
+n + A2 =

(

A−B + n + 1
2

) (

A+B − n− 1
2

)

,

E
(A,B)
−n + A2 = n(2A− n), (2.60)

Spectrum of H
′(A,B)
− : E

(A−1,B)
+n + A2 =

(

A−B + n+ 1
2

) (

A+B − n− 1
2

)

,

E
(A−1,B)
−n + A2 = (n+ 1)(2A− n− 1). (2.61)

Moving on to PSUSY we consider, as a first choice, the superpotentials W1(x)

and W2(x) defined by

W1(x) = W (A,B)(x), W2(x) =W ′(A,B−1)(x),

c1 = −c2 =
1
2

[

A2 −
(

B − 1
2

)2
]

. (2.62)

We then get for the component Hamiltonians of Hps,

H1 = H(A,B) + E , H2 = H(A,B−1) + E , H3 = H(A−1,B−1) + E ,

E ≡ 1
2

[

A2 +
(

B − 1
2

)2
]

, (2.63)

where (2.55) has been used. As a result, the following spectra of H1, H2, and H3

emerge:

Spectrum of H1: E
(A,B)
+n + E = −

(

B − 1
2
− n

)2
+ E ,

E
(A,B)
−n + E = − (A− n)2 + E , (2.64)

Spectrum of H2: E
(A,B−1)
+n + E = −

(

B − 3
2
− n

)2
+ E ,

E
(A,B−1)
−n + E = − (A− n)2 + E , (2.65)

Spectrum of H3: E
(A−1,B−1)
+n + E = −

(

B − 3
2
− n

)2
+ E ,

E
(A−1,B−1)
−n + E = − (A− 1− n)2 + E . (2.66)
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We therefore see that in going from H1 to H2, one suppresses the ground state

of H1 at an energy 1
2

[

A2 −
(

B − 1
2

)2
]

< 0. Then in going from H2 to H3, one

suppresses a state of H2 at an energy 1
2

[

(

B − 1
2

)2
− A2

]

> 0. The latter is either

an excited state or the ground state according to whether B > A+ 3
2
or B < A+ 3

2
.

For completeness, let us write down the spectrum of Hps. If B − N < A + 1
2
<

B −N + 1, where N ∈ {1, 2, 3, . . .}, it reads

E0 = 1
2

[

A2 −
(

B − 1
2

)2
]

, d0 = 1,

E1 = E0 + 2B − 2, d1 = 3,

...

EN−1 = E0 + (N − 1)(2B −N), dN−1 = 3,

EN = E0 − A2 +
(

B − 1
2

)2
, dN = 2,

...

EN+2p+1 = E0 + (N + p)(2B −N − p− 1), dN+2p+1 = 3,

p = 0, 1, . . . , p+max,

EN+2p = E0 − (A− p)2 +
(

B − 1
2

)2
, dN+2p = 3,

p = 1, 2, . . . , p−max. (2.67)

In (2.67), di (i = 0, 1, . . . , N − 1, N , . . . , N + 2p + 1, N + 2p) is the degeneracy,

p+max = n+max −N , and p−max = n−max.

We next consider the second choice of the superpotentials, namely

W ′

1(x) = W ′(A,B)(x), W ′

2(x) = W (A−1,B)(x),

c′1 = −c′2 =
1
2

[

(

B − 1
2

)2
− A2

]

. (2.68)

We obtain after a little algebra

H ′

1 = H(A,B) + E , H ′

2 = H(A−1,B) + E , H ′

3 = H(A−1,B−1) + E , (2.69)

where E is the same as in (2.63). The spectra of H ′

1, H
′

2, and H
′

3 read

Spectrum of H ′

1: E
(A,B)
+n + E = −

(

B − 1
2
− n

)2
+ E ,
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E
(A,B)
−n + E = − (A− n)2 + E , (2.70)

Spectrum of H ′

2: E
(A−1,B)
+n + E = −

(

B − 1
2
− n

)2
+ E ,

E
(A−1,B)
−n + E = − (A− 1− n)2 + E , (2.71)

Spectrum of H ′

3: E
(A−1,B−1)
+n + E = −

(

B − 3
2
− n

)2
+ E ,

E
(A−1,B−1)
−n + E = − (A− 1− n)2 + E . (2.72)

We thus see that in going from H ′

1 to H ′

2, one suppresses an excited state of H ′

1

at an energy 1
2

[

(

B − 1
2

)2
−A2

]

> 0. Then in going from H ′

2 to H ′

3, one suppresses

the ground state of H ′

2 at an energy 1
2

[

A2 −
(

B − 1
2

)2
]

< 0. Further if B − N <

A+ 1
2
< B −N + 1, where N ∈ {1, 2, 3, . . .}, then the spectrum of Hps is the same

as in the previous case, but the degeneracies are d0 = 2, d1 = 3, . . . , dN−1 = 3,

dN = 1, . . . , dN+2p+1 = 3, dN+2p = 3.

In the limiting cases where A + 1
2
and B differ by some integer, H(A,B) has a

single series of energy levels due to the phenomenon of unavoided level crossings

without degeneracy [12]. The PSUSY scheme then becomes similar to the usual one

for Hermitian Hamiltonians.

2.4 PT-symmetric Scarf II potential

The Hamiltonian for the PT-symmetric Scarf II potential is given by [12]

H(A,B) = −
d2

dx2
−
[

B2 + A(A + 1)
]

sech2 x+ iB(2A + 1) sech x tanh x, (2.73)

where A > B − 1
2
> 0 and A − B + 1

2
is not an integer. The form (2.73) is PT

symmetric; like the PT-symmetric generalized Pöschl-Teller Hamiltonian (2.47), it

also exhibits invariance under exchange of the parameters A + 1
2
and B. Full and

detailed analyses of the various properties of (2.73) have already been given by us

elsewhere [12] in connection with sl(2,C) potential algebra. We have found that

PT-symmetric Scarf II potential depicts two series of energy levels. These are

E
(A,B)
+n = − (A− n)2 , n = 0, 1, . . . , n+max,
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A− 1 ≤ n+max < A, (2.74)

E
(A,B)
−n = −

(

B − 1
2
− n

)2
, n = 0, 1, . . . , n−max,

B − 3
2
≤ n−max < B − 1

2
. (2.75)

The accompanying eigenfunctions read

ψ
(A,B)
+n ∝ (sech x)A exp[−iB arctan(sinh x)]P

(−A+B−
1

2
,−A−B−

1

2
)

n (i sinh x),(2.76)

ψ
(A,B)
−n ∝ (sech x)B−

1

2 exp
[

−i
(

A + 1
2

)

arctan(sinh x)
]

× P
(A−B+ 1

2
,−A−B−

1

2
)

n (i sinh x), (2.77)

in terms of Jacobi polynomials.

We are now going to show that the model (2.73) possesses PSUSY. This can be

easily established, as we did for the PT-symmetric oscillator and generalized Pöschl-

Teller potentials, by demonstrating first that two superpotentials exist for it in the

context of SUSY. PSUSY can then be contructed taking their help.

Indeed one can verify that two possible candidates of the superpotential are

W (A,B)(x) = A tanhx+ iB sech x, E = −A2, (2.78)

W ′(A,B)(x) =
(

B − 1
2

)

tanhx+ i
(

A + 1
2

)

sech x, E ′ = −
(

B − 1
2

)2
, (2.79)

where E and E ′ are the factorization energies. Note that (2.79) is obtainable

from (2.78) under the replacements A+ 1
2
↔ B.

While corresponding to (2.78) we derive

V
(A,B)
+ (x) = V (A,B)(x), V

(A,B)
− (x) = V (A−1,B)(x), (2.80)

where V (A,B)(x) is the potential of (2.73), Eq. (2.79) yields the pair

V
′(A,B)
+ (x) = V (A,B)(x), V

′(A,B)
− (x) = V (A,B−1)(x). (2.81)

The associated partner Hamiltonians for (2.80) and (2.81) are

H
(A,B)
+ = H(A,B) + A2, H

(A,B)
− = H(A−1,B) + A2, (2.82)

H
′(A,B)
+ = H(A,B) +

(

B − 1
2

)2
, H

′(A,B)
− = H(A,B−1) +

(

B − 1
2

)2
. (2.83)
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Further, defining operators A = d
dx

+W (A,B)(x) and A′ = d
dx

+W ′(A,B)(x), it is a

simple exercise to check that the states ψ
(A,B)
+0 and ψ

(A,B)
−0 are annihilated by A and

A′, respectively. The spectra of H
(A,B)
± and H

′(A,B)
± turn out to be

Spectrum of H
(A,B)
+ : E

(A,B)
+n + A2 = n(2A− n),

E
(A,B)
−n + A2 =

(

A− B + n + 1
2

)

×
(

A+B − n− 1
2

)

, (2.84)

Spectrum of H
(A,B)
− : E

(A−1,B)
+n + A2 = (n+ 1)(2A− n− 1),

E
(A−1,B)
−n + A2 =

(

A−B + n+ 1
2

)

×
(

A+B − n− 1
2

)

, (2.85)

Spectrum of H
′(A,B)
+ : E

(A,B)
+n +

(

B − 1
2

)2
=
(

B −A+ n− 1
2

)

×
(

B + A− n− 1
2

)

,

E
(A,B)
−n +

(

B − 1
2

)2
= n(2B − n− 1), (2.86)

Spectrum of H
′(A,B)
− : E

(A,B−1)
+n +

(

B − 1
2

)2
=
(

B −A + n− 1
2

)

×
(

B + A− n− 1
2

)

,

E
(A,B−1)
−n +

(

B − 1
2

)2
= (n+ 1)(2B − n− 2). (2.87)

While (2.84) and (2.85) show the conventional unbroken SUSY picture, (2.86) and

(2.87) point to an unusual scenario: an excited state at vanishing energy is sup-

pressed.

Equipped with the above SUSY machinery, we define the following pair of su-

perpotentials for p = 2 PSUSY:

W1(x) = W (A,B)(x), W2(x) =W ′(A−1,B)(x),

c1 = −c2 =
1
2

[

(

B − 1
2

)2
− A2

]

. (2.88)

Then it follows from (2.16), (2.82), and (2.83) that

H1 = H(A,B) + E , H2 = H(A−1,B) + E , H3 = H(A−1,B−1) + E ,

E ≡ 1
2

[

A2 +
(

B − 1
2

)2
]

. (2.89)
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The spectra of H1, H2, and H3 are

Spectrum of H1: E
(A,B)
+n + E = − (A− n)2 + E ,

E
(A,B)
−n + E = −

(

B − 1
2
− n

)2
+ E , (2.90)

Spectrum of H2: E
(A−1,B)
+n + E = − (A− 1− n)2 + E ,

E
(A−1,B)
−n + E = −

(

B − 1
2
− n

)2
+ E , (2.91)

Spectrum of H3: E
(A−1,B−1)
+n + E = − (A− 1− n)2 + E ,

E
(A−1,B−1)
−n + E = −

(

B − 3
2
− n

)2
+ E . (2.92)

From (2.90)–(2.92) we find that when going from H1 to H2, one suppresses the

ground state of H1 at an energy 1
2

[

(

B − 1
2

)2
− A2

]

< 0. Then when going from H2

to H3, one suppresses a state of H2 at an energy 1
2

[

A2 −
(

B − 1
2

)2
]

> 0. Such a

state is an excited or the ground state according to whether A > B+ 1
2
or A < B+ 1

2
.

In general, if A−N < B− 1
2
< A−N+1, where N ∈ {1, 2, 3, . . .}, then the spectrum

of Hps is

E0 = 1
2

[

(

B − 1
2

)2
− A2

]

, d0 = 1,

E1 = E0 + 2A− 1, d1 = 3,

...

EN−1 = E0 + (N − 1)(2A+ 1−N), dN−1 = 3,

EN = E0 + A2 −
(

B − 1
2

)2
, dN = 2,

...

EN+2p+1 = E0 + (N + p)(2A−N − p), dN+2p+1 = 3,

p = 0, 1, . . . , p+max,

EN+2p = E0 + A2 −
(

B − 1
2
− p

)2
, dN+2p = 3,

p = 1, 2, . . . , p−max, (2.93)

where di (i = 0, 1, . . . , N − 1, N , . . . , N + 2p + 1, N + 2p) is the degeneracy,

p+max = n+max −N , and p−max = n−max.
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Keeping in mind the invariance of (2.73) under A + 1
2
↔ B, we can also define

another set of superpotentials

W ′

1(x) = W ′(A,B)(x), W ′

2(x) = W (A,B−1)(x),

c′1 = −c′2 =
1
2

[

A2 −
(

B − 1
2

)2
]

. (2.94)

Then using (2.83) and (2.82), we get

H ′

1 = H(A,B) + E , H ′

2 = H(A,B−1) + E , H ′

3 = H(A−1,B−1) + E , (2.95)

implying the following spectra:

Spectrum of H ′

1: E
(A,B)
+n + E = − (A− n)2 + E ,

E
(A,B)
−n + E = −

(

B − 1
2
− n

)2
+ E , (2.96)

Spectrum of H ′

2: E
(A,B−1)
+n + E = − (A− n)2 + E ,

E
(A,B−1)
−n + E = −

(

B − 3
2
− n

)2
+ E , (2.97)

Spectrum of H ′

3: E
(A−1,B−1)
+n + E = − (A− 1− n)2 + E ,

E
(A−1,B−1)
−n + E = −

(

B − 3
2
− n

)2
+ E . (2.98)

We thus see that in going from H ′

1 to H
′

2, one suppresses an excited state of H ′

1 at

an energy 1
2

[

A2 −
(

B − 1
2

)2
]

> 0. Then when going from H ′

2 to H ′

3, one suppresses

the ground state of H ′

2 at an energy 1
2

[

(

B − 1
2

)2
− A2

]

< 0. If A − N < B − 1
2
<

A − N + 1, where N ∈ {1, 2, 3, . . .}, then the spectrum of Hps is the same as in

the previous case of (2.88), but the degeneracies are d0 = 2, d1 = 3, . . . , dN−1 = 3,

dN = 1, . . . , dN+2p+1 = 3, dN+2p = 3.

Whenever A − B + 1
2
goes to an integer, we observe the same collapse of the

double series of energy levels [12] and restoration of the usual PSUSY scheme as in

the two previous subsections.

3 In pursuit of a complexified SSUSY
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3.1 Underlying ideas of SSUSY

SSUSY is an extended supersymmetric theory having a second-derivative realization

of the differential operators A and Ā [23]–[28]. SSUSY schemes find interesting

applicability to non-trivial quantum mechanical problems, which include coupled

channel problems and those related to transparent matrix potentials. SSUSY is

not guided by a Schrödinger form of the Hamiltonian operator, but instead by a

quasi-Hamiltonian K, which is a fourth-order differential operator. However, under

certain conditions, K can be related to the square of the Schrödinger Hamiltonian:

indeed this feature has been exploited to arrive at models of PSUSY by glueing two

ordinary SUSY systems [23].

Consider supercharges involving second derivatives (∂ ≡ d/dx):

A+ = ∂2 − 2p(x)∂ + b(x), (3.1)

A− = ∂2 + 2p(x)∂ + 2p′(x) + b(x), (3.2)

where p(x) and b(x) are arbitrary functions. Let us introduce the following operators

built out of A+ and A−:

Q+ =





0 0

A− 0



 , Q− =





0 A+

0 0



 . (3.3)

In analogy with (2.1), we can think of a quasi-Hamiltonian K defined by

K = Q+Q− +Q−Q+. (3.4)

Clearly K is a fourth-order differential operator.

We can also construct another operator H from two Schrödinger-like Hamiltoni-

ans h(1) and h(2):

H =





h(1) 0

0 h(2)



 , (3.5)

h(1,2) = −∂2 + V (1,2), (3.6)

such that H commutes with Q±:

[

H,Q±
]

= 0. (3.7)
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From (3.3), (3.5), and (3.7), we are led to

A−h(1) = h(2)A−, A+h(2) = h(1)A+. (3.8)

These are intertwining relationships similar to the supersymmetric ones (2.8).

Using the representations (3.1) and (3.2), we can exploit (3.8) to obtain con-

straints among the functions p(x), b(x), and the potentials V (1,2)(x):

b = −p′ + p2 −
p′′

2p
+

(

p′

2p

)2

+
d

4p2
, (3.9)

V (1,2) = ∓2p′ + p2 +
p′′

2p
−

(

p′

2p

)2

−
d

4p2
− a, (3.10)

where d and a are integration constants and the primes denote derivatives with

respect to x.

We next address to what is known as polynomial SUSY. Here the quasi-

Hamiltonian K is taken to be a quadratic in H :

K = H2 + 2αH + β = (H + a)2 + d, (3.11)

where α, β are constants, and a = α, d = β − α2. A PSUSY model can be

developed [23] by choosing a = 0, for which

K = H2 + d. (3.12)

Factorization of K requires d to be a perfect square in the form d = c2

4
for d > 0

or d = − c2

4
for d < 0. Andrianov et al. [24, 25] call d < 0 a reducible algebra and

d > 0 an irreducible one. In the reducible case, we can imagine the existence of

an intermediate Hamiltonian that behaves like a superpartner to both h(1) and h(2).

Alternatively, this triplet of Hamiltonians furnishes a model for PSUSY.

In the following we will be interested in the reducible case only and write

K = H2 − c2

4

=







(

h(1) + c
2

) (

h(1) − c
2

)

0

0
(

h(2) − c
2

) (

h(2) + c
2

)





 . (3.13)
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We also know from (3.4) and (3.3) that

K =





A+A− 0

0 A−A+



 . (3.14)

Our immediate problem will be to reconcile (3.13) and (3.14). To this end, we

factorize A+ and A− as

A+ = q+1 q
+
2 = (−∂ +W1)(−∂ +W2),

A− = q−2 q
−

1 = (∂ +W2)(∂ +W1). (3.15)

We thus run into a pair of superpotentials W1 and W2 in SSUSY quite naturally.

Next choosing a constraint

q+2 q
−

2 − c
2
= q−1 q

+
1 + c

2
, (3.16)

we at once see that we can express

A+A− =
(

q+1 q
−

1 + c
2
+ c

2

) (

q+1 q
−

1 + c
2
− c

2

)

,

A−A+ =
(

q−2 q
+
2 − c

2
− c

2

) (

q−2 q
+
2 − c

2
+ c

2

)

. (3.17)

Eq. (3.17) suggests that we can interpret

h(1) = q+1 q
−

1 + c
2
, h(2) = q−2 q

+
2 − c

2
. (3.18)

Hence (3.13) and (3.14) can be reconciled.

From (3.18), we further have

h(1) = (−∂ +W1)(∂ +W1) +
c

2

= −∂2 + V (1)(x), (3.19)

h(2) = (∂ +W2)(−∂ +W2)−
c

2

= −∂2 + V (2)(x), (3.20)

reflecting

V (1)(x) =W 2
1 −

dW1

dx
+
c

2
, V (2)(x) =W 2

2 +
dW2

dx
−
c

2
. (3.21)
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To tie up, we confront (3.10) with the expressions (3.21). The results for a = 0

are

W1 = −
2p′ + c

4p
+ p, W2 =

2p′ + c

4p
+ p. (3.22)

We are thus led to explicit forms of the two superpotentials W1 and W2 in terms of

the function p(x) only.

Note that there exists, notionally, an intermediate Hamiltonian h, which is su-

perpartner to both h(1) and h(2):

h(1) = q+1 q
−

1 + c
2
, h = q−1 q

+
1 + c

2
, h(2) = q−2 q

+
2 − c

2
. (3.23)

Due to the constraint (3.16), we can express h as

h = q−1 q
+
1 + c

2
= q+2 q

−

2 − c
2
. (3.24)

The constraint (3.16), when exposed in terms of the superpotentials W1 and W2,

reads

W 2
2 −W 2

1 −
dW1

dx
−
dW2

dx
= c. (3.25)

Eq. (3.25) coincides with (2.15).

3.2 PT-symmetric oscillator potential

First of all, we notice that h(1), h, h(2) defined above go over to H1, H2, H3 of (2.13),

respectively, provided we identify q+1 , q
+
2 with Ā1, Ā2, and the constants c1, c2 with

c/2, −c/2, respectively. The latter certainly hold since in (2.16) we have taken

c1 + c2 = 0.

Setting now c = −4α and p(x) = x−iδ, it is trivial to see thatW1 andW2 in (3.22)

get complexified and are mapped to the expressions ofW (α)(x) andW ′(α−1)(x) given

by (2.20) and (2.21), respectively.

On the other hand, if we set c = +4α, then W1 and W2 in (3.22) are mapped to

W ′(α)(x) and W (α+1)(x) given by (2.21) and (2.20), respectively.

Concerning the constraint relation (3.25), we observe that it holds both for c =

−4α and c = +4α if the corresponding expressions for W1 and W2 are plugged in.
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Finally, from the point of view of SSUSY we can associate with PSUSY Hamil-

tonian (2.13) two distinct SUSY Hamiltonians given by

H(1)
s =

(

Ā1A1 +
c
2

0
0 A1Ā1 +

c
2

)

, H(2)
s =

(

Ā2A2 −
c
2

0
0 A2Ā2 −

c
2

)

, (3.26)

where c = ±4α. Conversely, we could arrive at the p = 2 PSUSY form for the

Hamiltonian by glueing H(1)
s and H(2)

s given by (3.26).

In the following we show that the results of the PT-symmetric generalized Pöschl-

Teller and Scarf II potentials are similar to those just obtained for the PT-symmetric

oscillator one.

3.3 PT-symmetric generalized Pöschl-Teller potential

With the first choice of superpotentials coming from the analysis carried out for the

PT-symmetric generalized Pöschl-Teller problem earlier, namely

W1 = W (A,B) =
(

B − 1
2

)

coth τ −
(

A+ 1
2

)

cosech τ,

W2 = W ′(A,B−1) = A coth τ − (B − 1) cosech τ, (3.27)

it is easy to see that (3.27) fits into the scheme (3.22) for the combination

p(x) = 1
2

(

A+B − 1
2

)

(coth τ − cosech τ),

c =
(

A+B − 1
2

) (

A−B + 1
2

)

. (3.28)

If we consider instead the second choice

W1 = W ′(A,B) = A coth τ − B cosech τ,

W2 = W (A−1,B) =
(

B − 1
2

)

coth τ −
(

A− 1
2

)

cosech τ, (3.29)

we need only to interchange A and B − 1
2
in (3.28). Thus p(x) is left unchanged

while c just changes sign:

p(x) = 1
2

(

A+B − 1
2

)

(coth τ − cosech τ),

c = −
(

A+B − 1
2

) (

A−B + 1
2

)

. (3.30)
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3.4 PT-symmetric Scarf II potential

Here our first choice of superpotentials comes from (2.78) and (2.79):

W1 = W (A,B) = A tanh x+ iB sech x,

W2 = W ′(A−1,B) =
(

B − 1
2

)

tanhx+ i
(

A− 1
2

)

sech x. (3.31)

On seeking consistency with (3.22), we are led to the solutions

p(x) = 1
2

(

A+B − 1
2

)

(tanh x+ i sech x),

c = −
(

A+B − 1
2

) (

A− B + 1
2

)

. (3.32)

The second choice of superpotentials pertains to

W1 = W ′(A,B) =
(

B − 1
2

)

tanh x+ i
(

A+ 1
2

)

sech x,

W2 = W (A,B−1) = A tanh x+ i(B − 1) sech x. (3.33)

This corresponds to an interchange of A and B − 1
2
in the first choice (3.31). The

function p(x) remains the same but c changes sign:

p(x) = 1
2

(

A+B − 1
2

)

(tanh x+ i sech x),

c =
(

A+B − 1
2

) (

A− B + 1
2

)

. (3.34)

4 Summary

To summarize our results, we note that in all the three potentials considered by

us, namely the PT-symmetric harmonic oscillator, generalized Pöschl-Teller, and

Scarf II potentials, we found order-two PSUSY and SSUSY appropriate mediums

to account for their double series of energy levels. Taking cue from the SUSY

results, we found possible to confront the expressions for the relevant superpotential

by an appropriate series of energy levels. These superpotentials, in turn, not only

allow developing PSUSY models, but also adjust nicely with the constraint relations

relevant to the SSUSY construction. In this way, the potentials considered by us

can be interpreted in terms of PSUSY and SSUSY schemes.
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