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Abstract

Inspired by the behavior in repeated guessing game experiments, we study adaptive play
by populations containing individuals that reason with different levels of cognition. Indi-
viduals play a higher order best response to samples from the empirical data on the history
of play, where the order of best response is determined by their exogenously given level
of cognition. As in Young’s model of adaptive play, (unperturbed) play still converges to
a minimal curb set. However, with the random perturbations of this (higher order) best
response dynamic, the stochastically stable states obtained may now be different, but in a
deterministic manner. Perhaps counter-intuitively, higher cognition may actually be bad

for both the individual with higher cognition and his parent population.
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1 Introduction

One of the primary focuses of game theory is to model individual decision making in settings
of strategic conflict. The more traditional workhorse employed to this end has been the
assumption of rationality and common belief of it, which at times might be a very demanding
requirement. Binmore (1987) discusses fundamental issues with this assumption, including
the inconsistency that it cannot be replicated by a Turing machine. Furthermore, experiments
on human subjects reveal that for certain applications, the assumptions of common belief of
rationality and its associated implication of an infinite depth of reasoning appear too strong,
resulting in a disparity between theoretical predictions and empirical observations in the
laboratory. This has generated considerable interest in a paradigm where individuals are
either capable of, or make use of finite depth of reasoning. This could be either because of
cognitive limitations on individuals or because of a belief that the co-player in the strategic
situation will employ finite depth of reasoning, in which case it is also optimal to do so.

To illustrate this, consider the guessing game experiment of Nagel (1995) wherein individ-
uals had to guess the number in the interval [0, 100] which would be the closest to p < 1 times
the mean of all guesses. Under common belief of rationality, the only rationalizable choice
is to guess 0. The empirical data of the experiment, though, suggests that only a handful
of the subjects guess 0. A considerable amount of the chosen strategies can be described
by what is called “level-k” behavior. Here, level-1 behavior refers to best responding to the
belief that mean of the guesses is going to be clustered around 50. This could be either due
to the salience of the number 50 (Schelling salience) or because of the belief that the guesses
of the others can be approximated by a uniform distribution over the interval [0,100]. In ei-
ther case, the optimal guess arising out of level-1 behavior is 50 p. Level-2 behavior supposes
that the others will employ level-1 reasoning and guess 50 p. Consequently, it is optimal to
guess 50 p?. Higher order level-k behavior is defined iteratively with level-k behavior being
identified with guessing 50p*. Nagel (1995) finds that most of the subjects exhibit level-1
and level-2 behavior. The decisions in subsequent repetitions show a declining trend in the
guesses. Two mutually non-exclusive explanations are an increase in the subjects’ depth of
reasoning and a shift in reference point for the most primary belief. Nagel’s (1995) data does
not provide any evidence for the former explanation and leans strongly towards the second
explanation: subjects seem to use the mean of the previous period as the reference point.

A fair amount of theoretical and experimental studies has been directed towards the
development of models that explicitly take into account the beliefs of individuals about other
individuals’ strategic decisions. For example, Stahl (1993) and Stahl and Wilson (1995)
present a theoretical model of such players. The latter use a series of experiments to test for
this pattern. Camerer et al. (2004) develop a cognitive hierarchy model in which each player

assumes that she is the most sophisticated type and that the other individuals are of lower



cognition. These models seem to explain the pattern of play in initial rounds of experiments
— such as the one of Nagel (1995) — fairly well. They also are found to be robust to a wide
specification of games: cf. Stahl and Wilson (1994, 1995), Crawford and Iriberri (2007), Wang
et al. (2010) and Coricelli and Nagel (2009).

Our interest, on the other hand, is to examine the effect of such a hierarchical model of
players on the long-run process. Thus, not only are we interested in a framework where we
begin with the hypothesis that individuals come in varying degrees of sophistication, but allow
the different levels of cognition to operate on past experience as indicated by the empirical
data of play. While the sophistication of a particular individual does not change over time,
individuals pay attention to the way in which the game has unfolded in the recent past. The
importance of modeling this feature is also emphasized in Binmore (1988). Although his main
focus is on, what he calls, the “eductive process” (i.e., the cognitive process of the individual
during the decision-making) rather than the “evolutive process”, he recognizes the importance
of the latter as well. In this paper, we consider a process which, while evolutionary in nature,
also has the flavor of the eductive process. We believe that Young’s (1993a, 1998) model of
adaptive play provides a very convenient platform to incorporate these elements.

In Young’s model of adaptive play, the interaction is modeled as a population game,
where a population of players is associated with a specific role in a game. Populations have,
at their disposal, a record of recent history of play. In each period, an individual is drawn
randomly from the parent population to play the game. The individual samples incompletely
and without replacement from the past play of the rival population and plays a best response
to the empirical distribution of strategies as revealed by the sample. In terms of the level-
k model, this means that the individuals, by best responding to the empirical distribution
available to them, exhibit level-1 behavior. Using an argument similar to Hurkens (1995),
Young (1998) demonstrates that play converges almost surely to a minimal curb set.! The
minimal curb sets form the recurrent classes (absorbing sets) of the dynamic process described
by simple best response behavior. In order to select amongst the minimal curb sets (which
may be numerous), the notion of stochastic stability is adopted.

We introduce the element of sophistication in this model of adaptive play in order to
study the effect of higher cognition on long run outcomes. Young’s model, with only simple
(best responding) players, serves as the point of reference. We postulate that populations are
comprised of individuals of varying levels of sophistication.? The most primitive behavioral

trait is described by the level-1 individuals referenced to above.? A level-2 individual holds the

!The minimal curb set is, loosely speaking, a set which contains all its best responses and there is no proper
subset contained in it with the same property. This concept was first introduced by Basu and Weibull (1991).

2Mohlin (forthcoming) shows that it is possible for evolutionary learning processes to converge to a state
where different cognitive types co-exist.

3For the purpose of nomenclature, we retain the associated terminology of the level-k model, even though
we step outside the boundaries of it. Our focus is the long-run behavior, whereas the level-k model is meant
for the purpose of explaining initial play.



belief that the rival is a level-1 type. Consequently, she samples from the actions of the own
population to estimate the best response of a level-1 individual in the rival population and
best responds to the estimate just formed. A level-3 individual plays a best response to the
belief that the rival is of level-2. Hence, the level-3 individual samples from the actions of the
rival population to estimate the best response of a level-1 individual in the own population.
This is then used to estimate the best response of a level-2 individual in the rival population.
The level-3 individual plays a best response to this estimate of the strategy that might be
used by the level-2 individual of the rival population. This process is iterated one step more
for each higher level of sophistication. So, as in Nagel (1995), each player assumes that the
other players are one step down on the cognitive scale.

In Proposition 1, we show that the convergence to a minimal curb set, as shown by
Young (1998) for the setting with only simple players, is invariant to the introduction of any
higher level of sophistication in any population. A refinement of the minimal curb sets of
the game may be obtained by considering an infinitesimally small probability of mistakes or
experimentation, whereby individuals choose any strategy (and not necessarily a best response
of some order). This selects the set of stochastically stable states. The possibility of mistakes
or experimentation now makes transition across minimal curb sets possible and the minimal
curb sets that are most “stable” to such mistakes comprise the set of stochastically stable
states. In Propositions 2-4, we find that the stochastically stable set may be sensitive to the
composition of cognitive types in the populations. Proposition 2 shows this for the specific
instance of the evolutionary Nash bargaining game while Propositions 3 and 4 do so for generic
games.

In Young (1993b) it is shown that in the evolutionary Nash bargaining game with sim-
ple players only, the long-run outcome is the generalized Nash bargaining solution with the
bargaining power being proportional to the populations’ own sample size. The intuition is
simple: the smaller the sample size, the higher is the responsiveness to mistakes in the other
population, leading to a smaller bargaining power.* In Proposition 2 we show that the intro-
duction of more sophisticated individuals in a single population has no effect on the long-run
outcome in case this population has the larger sample size, but that the standard Nash bar-
gaining solution (that is, equal bargaining power) is obtained as long-run outcome in case
this population has a smaller sample size. This effect has already been shown by Saez-Marti
and Weibull (1999) when allowing for “clever” individuals (that is, of level-2) on one side.
They conclude that a grain of cleverness compensates for the lower bargaining power from
smaller sample size but cleverness confers no additional benefit apart from that. This finding
is driven by the fact that level-2 individuals best respond to a best response to the sample of

their own population. Via their believes, the level-2 individuals, when endowed with a smaller

4Although in the Nash bargaining game a higher sample size confers a benefit to the population, depending
on the payoff structure it can be a bane as well — see Section 6 for more details.



sample size, make the rival population appear more responsive to mistakes made by the own
population. We show that there are no benefits of adding individuals of even higher level of
cognition. Moreover, we show that if both populations host sophisticated individuals, then
we obtain the standard Nash bargaining solution as the stochastically stable state.

In Proposition 3 we show that for generic games, the introduction of a fraction of so-
phisticated individuals in one population has an effect on the stochastically stable set only
if the population with these individuals has a smaller sample size. Proposition 4 claims that
if both populations host individuals with at least level-2 cognition, then irrespective of the
relative sample size, the stochastically stable set is the same as that in Young’s adaptive play
model with both populations having equal sample size. Thus, the effect of higher cognition
is to “decrease” the sample size of the rival population to that of the own population. Ma-
tros (2003) already showed this for the situation where one population has level-2 individuals
and both populations have the same sample size. Our result extends Matros (2003), as we
allow for even higher levels of cognition, populations to have unequal sample sizes, and both
populations to host individuals of level-2 or higher.

In the following section, we specify the model of adaptive play with higher cognitive
individuals in more detail and state that this process of adaptive play converges to a minimal
curb set. In Section 3 and Section 4, we study the impact of higher cognitive types on the
long-run outcome for the evolutionary Nash bargaining game and general games respectively.
In Section 5, we provide a discussion on two possible alternative specifications of our model.
In our model we assume that an individual of a particular level believes she is playing someone
of one level lower. In the first alternative specification, we show that our results are robust to
the alternative specification where she believes her rival to be of any lower level — as is assumed
for instance in Stahl (1993) and Camerer et al. (2004). In the second alternative specification,
for a specific class of games, we relax the knowledge (individuals within) populations may
have about cardinal preferences of (individuals within) the rival population. As a result,
higher cognitive types use their own utility function while forming a belief about the rival’s
play. Binmore (1988) mentions that such form of introspection might be a plausible way
in which higher cognition operates. We find that play still converges to a minimal curb
set (as ordinal preferences do not change), but the stochastically stable set may change (as
the sensitivity to mistakes may change): in the evolutionary Nash bargaining game, the
generalized Nash bargaining solution with bargaining power proportional to the rivals’ sample
size and the 50-50 split may become feasible long-run outcomes. Finally, we close with a
discussion of the implication of our results in Section 6. Amongst other things, we discuss the
qualitative impact of higher cognition. The distribution of strategies in the long-run outcome
might be affected, possibly resulting in payoff differences across individuals within and across
populations. Further it is, perhaps counter-intuitively, shown that an entire population can

be worse-off by the presence of more cognitive individuals.



2 Preliminaries

There are two finite populations A and B and each population is assigned a specific role in
a specified two-player game that is played recurrently between randomly selected individuals
from the two populations. Each individual has a positive probability of representing the
population that she belongs to.> The selected individual from population A (B) has to
choose a strategy x4 (zp) out of a finite set of strategies X4 (Xp). The pair of chosen
strategies (va,xp) € X4 x Xp yields a payoff of ma(z4,xp) and mp(z4,zp) to the individual
from population A and B respectively. We assume each population to be homogenous, i.e. all
individuals in a population have the same utility function. The only heterogeneity we assume
within a population is in the level of sophistication.

We assume individuals play adaptively. Both populations have access to the strategies
chosen in the last m periods of play and individuals in population A (B) can draw a sample
of proportion a (b) — i.e., of length am (bm) — without replacement. We assume each possible
sample to have a positive probability of being drawn, but do not require all samples in the
history to be equally likely to be drawn.

We identify the empirical distribution over chosen strategies with level-0 (L0) behavior.
So, a level-1 (L1) individual plays a best response to her sample from the rival population’s
strategies. Next, a level-2 (L2) individual holds the belief that her rival is L1 and attempts
to best respond to the strategy that the L1 individual of the rival population might choose.
As a result, the L2 individual samples from her own population’s past play, formulates the
best response to the drawn sample’, adopts this as estimate of the strategy that the rival
L1 individual might use, and plays a best response to it. The behavior of any individual of
higher level of sophistication is described analogously.

It is evident from the above that an Lk individual, with k£ odd, draws a sample from
the strategies of the rival population. In contrast, an Lk individual, with k even, draws a
sample from the strategies of the own population. Following that, the sample is processed in
accordance to the cognition of the individual.

At this point, we make the assumption that if a population contains an Lk individual with
k > 2, then it also contains an L(k — 1) individual.® So, we do not allow the entire population
to be be composed of, say, L4 individuals only. And, in case a population contains an L4
individual, then it also contains at least one L3, L2 and L1 individual. This permits us to
describe the cognitive types present in a population by the most sophisticated individual.

We use k4 and kg to refer to the highest cognitive level in population A and population B

5We do not require the probability to be selected to be equal for each individual in a population.

5In cases of multiple best responses, we always assume each best response to be chosen with positive
probability, not necessarily with equal chance.

“In order to do so, it is necessary that the L2 individual possess knowledge of the utility function of the
rival population.

8Tn Section 5 we replace this assumption with an alternative one.



respectively.

Given any arbitrary history on m periods of play, the adaptive process described above
yields a Markov process on the state space Q2 = (X4 x Xp)™, where the states are the possible
histories of length m. Let this (unperturbed) process, for sample proportions a and b and
highest levels of sophistication k4 and kg, be denoted by Pm’“”%A’bJ%B(O).

Let C; be a nonempty subset of X; (i = A, B). We denote the set of probability dis-
tributions over C; by A(C;). Moreover, by BR;(C;), we denote the set of strategies in Xj
that consists of the best replies to any mixture in A(Cj;) for the individuals in population
i (j # 1). Now, we can define the notion of (minimal) curb sets, which is due to Basu and
Weibull (1991). The product set C' = C4 x Cp is closed under best replies (or C' is a curb
set) if BRA(Cp) x BRp(C4) C C. Such a curb set is minimal if it does not properly contain

a curb set.

Proposition 1. If the history m is sufficiently large and the sampling is sufficiently incom-
plete (i.e., a and b are sufficiently small), then the minimal curb sets are the recurrent classes
of the process of adaptive play P™%Fabks (),

Proof. The proof for this is essentially the same as in Young (1998, Thm. 7) and Matros
(2003, Thm. 1). Young (1998) shows that best response adaptive play converges to a minimal
curb set in a finite number of steps when there are only L1 individuals in either population.
Since in our setting there is for any finite number of periods, a positive probability that only
L1 individuals are chosen during these periods, we know that our process converges to a
minimal curb set. Matros (2003) shows that a fraction of L2 individuals in one population
does not have any disruptive effect on the convergence to a minimal curb set. The idea
is that, by definition of the minimal curb set, higher order best responses are contained
in it. Using the same arguments, we can show that the same holds for Lk individuals in
either population. After play converges to a minimal curb set (by successively drawing L1
individuals), responses of all higher cognitive types are contained in it such that play never
leaves it. Furthermore, it is possible to transit from one state in the recurrent class to another
in finite time by considering the event that only L1 individuals are chosen. The result then
follows from Young (1998). |

The model of adaptive play so far has been built on the assumption that individuals are
simple or sophisticated best responders. This results in the convergence to a minimal curb set.
So, minimal curb sets represent the recurrent classes of the (unperturbed) Markov process.
In order to allow for transits from one minimal curb set to another, we need to perturb
the process. For the perturbed process, we assume that each individual has a probability
€ to experiment or to commit a mistake; that is, they may choose any strategy — even
those that are not a best response or a best response of a best response and so on, to any

conceivable sample drawn from the history of past play. These experimentations induce the



resulting perturbed process of adaptive play prakabks (€) to be ergodic, such that for each
e > 0 a unique stationary distribution exists; that is, a unique solution u(e) to the equation
e prsakabls (¢) = p. The stochastically stable set is defined to consist of precisely those
states that receive a positive weight in the limiting stationary distribution p* = lim, g p(e).

The stochastically stable set is a subset of the set of recurrent classes (or, in the present
case, the minimal curb sets) of the unperturbed adaptive process prakabks (0). Intuitively,
this set consists of the minimal curb sets that are easier to reach and more difficult to transit
from with (a series of) experimentations. We now make an important observation. We are
interested in the minimum number of experimentations that thereafter make a transition
from one minimal curb set to another possible via the best-response dynamic. The best
responses of Lk individuals, with k odd (even), are only affected by a sufficient number of
experimentations in the rival (own) population. For higher cognitive types, an Lk individual
will have a best response outside the prevailing minimal curb set only if she believes that the
L(k — 1) individual in the rival population will do so. But this happens if she believes that
the L(k — 1) individual believes that an L(k — 2) individual will do so. Ultimately, this can
be traced to the belief that an L1 individual in some population chooses a strategy outside
the recurrent class. If this does not happen, then none of the higher cognitive individuals
in any population believe that the actions of the rival is going to change. The belief that
an L1 individual in the rival (own) population does so, induces a change in behavior by Lk
individuals, with k£ odd (even).

3 The evolutionary Nash bargaining game

The Nash bargaining game is a two-player game where each of the two players demands a
portion of some good (or, amount of money). If the total amount requested by the players is
less than that available, both players get their request. If their total request is greater than
that available, neither player gets their request. In this section we consider the Nash bar-
gaining game in an evolutionary framework, played recurrently by randomly selected players
from two finite populations.

Let A and B be two populations consisting of a finite number of individuals. In each period
t, one individual is selected at random from each population to play the Nash bargaining game.
Simultaneously and independently, each individual announces a demand from the feasible set
of demands D(d) = {4,26,...,1 — §}, say 2!y and z'5. Each of them receives their respective
demand if the two demands sum up to not more than the whole (that we normalize to one); i.e,
if 2y + 2% < 1. Otherwise, both receive nothing. We assume that all individuals in population
A have the same concave, strictly increasing, differentiable von Neumann-Morgenstern utility
function u : [0, 1] — R with «(0) = 0. Similarly, we assume all individuals in population B to

have a utility function v : [0, 1] — R with the same properties.



At period t, individuals « and 8 are chosen from populations A and B. Both individuals
have access to a record of play of the last m periods: w! = ((xf{m, m'gm), . (:cil_l, m'gl)) €
Q= (D(0) x D(6))™. Individual a can draw a sample of size am of demand pairs (27, z%)
from the last m periods of play without replacement. Similarly, individual g draws a sample
of size bm of demand pairs (27, 2%) from the last m periods of play without replacement.
We do not require each pair to be drawn with equal probability, but it is essential that any
sample of the appropriate size can be drawn. Next, individual a (3) makes a demand 2,
(xtB) that maximizes her expected payoff against the empirical distribution of demands as
given by the sample drawn (given her depth of reasoning).

A state w € Q is a convention if it consists of some fixed division (Z4,Zp) € D(6) x D(0)
repeated m times in succession and we call it an efficient convention if, in addition, T4 +Zp =
1. In Theorem 1 of Young (1993b) it is shown — for populations solely consisting of L1
individuals — that if at least one individual in each population samples at most half of the
record of play, then (from any initial state) the process converges almost surely to an efficient
convention. This is actually a corollary of Proposition 1, as the set of efficient conventions
coincides with the set of all minimal curb sets. In the remainder of this section, we will focus
on the (set of) stochastically stable state(s) as the precision of demand ¢ goes to zero.

In Young (1993b) it is shown that when both populations consist solely of L1 individuals
(l% 4 = kg = 1), the stochastically stable state is the generalized Nash bargaining solution
with bargaining power proportional to the sample sizes, which is the efficient convention
given by the division (Z 4, Zp) that maximizes the Nash product (u(z4))%(v(zp))® subject to
zpg,xp € 10,1 and z4 + 25 = 1.

Séez-Marti and Weibull (1999) introduce, in one of the populations, clever agents (L2 indi-
viduals) who possess knowledge of the utility function of the members of the rival population.
These clever players estimate the best reply of the opponent by sampling from the record of
their own population and then best reply to this estimate. Let, without loss of generality,
these clever individuals be members of population A, such that ka=2and kg = 1. It is
demonstrated that if the proportion of these clever agents is less than 1, then the stochasti-
cally stable division — as the precision of demand ¢ tends to zero — is the generalized Nash
bargaining solution with the bargaining power proportional to the sample sizes a and b if
a > b, and to the standard Nash bargaining solution if ¢ < b. So, interpreting the sample
size in Young’s model as a measure of the bargaining power of a population, cleverness in a
population has the effect of compensating for lower bargaining power arising due to smaller
sample size, but it does not have an effect if the clever population has a larger sample size
(and hence higher bargaining power).

We relax the restriction on the level of sophistication of the individuals in the populations
in two directions. First, we allow the highest level of cognition in population A to be larger

than two: kq > 2. Second, we allow the possibility of clever (and even more sophisticated)



agents in the B population as well: kg > 2.

We find that if population B has only L1 individuals while population A has Lk individuals
with & > 2 (i.e., /;A > 2 and I;:B = 1), then nothing changes with respect to the result of
Séez-Marti and Weibull (1999). However, when population B also holds individuals of level of
sophistication larger than one (i.e., ka, kg > 2), then the standard Nash bargaining solution
is the unique stochastically stable state.

We summarize all results in the following proposition, where part (i) is due to Young
(1993b) and part (ii) is demonstrated for L2 individuals in one population by Sdez-Marti and
Weibull (1999).

Proposition 2. (i) Suppose that both populations comprise of L1 individuals. The stochas-
tically stable state is then the generalized Nash bargaining solution, with the bargaining power
of each population equal to the sample proportion of each population.

(i) Suppose population A has a fraction of sophisticated best responders. Then, the
stochastically stable state is the generalized Nash bargaining solution if a > b. Otherwise,
the stochastically stable state is the standard Nash bargaining solution.

(iii) Suppose both populations have sophisticated best responders. The stochastically stable

state is the standard Nash bargaining solution.

Proof. With unperturbed adaptive play, the play converges to an efficient convention. This
is because the minimal curb sets of the games coincide with the efficient conventions. To
identify the stochastically stable state, we need to look at the minimum number of experi-
mentations needed to transit from one convention to another.

Part (i). When there are only L1 individuals in each population, then the minimum
number of mistakes needed to move away from the efficient convention (z,1 — x) corresponds

to the smallest integer greater than or equal to m 9 (x), where

Ti(x) = a min{ u(a");%ﬂ(”ﬁc—é), uul(f)é 1 (1)
(z) (1-9)
. rv(l—2)—v(1l—2—0) v(l—=x
r%(x) = b min{ a 3(1—(915) )7 v((i_(s))}v and (2)
r(x) = min{rf (z),r}(2)}. (3)

To explain this, note that there are two ways that we can move away from a convention. One
is when individuals from population B make mistakes and these mistakes are sampled by
individuals in population A. The other is when individuals from population A make mistakes
and these mistakes are sampled by individuals in population B. Equation (1) captures the
former possibility; Equation (2) the latter.

There are two mistakes an individual of population B can make: demanding an amount
more than 1—x and demanding an amount less than 1—xz. Amongst the demands greater than
1 —x, the least resistant one is to ask for 4 more: i.e., demanding 1 —x+4. A best responding

individual of population A would shift to asking x — §, when this mistake has been made

10



sufficiently frequent. Let ¢ represent the least number of times population B has to make
this mistake in order to displace the convention. Given that population A individuals draw
a sample of size am, they may shift to asking x — § when %mé u(z) < u(x —§). This gives
the least proportion of mistakes -~ —=a %, which is one of the terms in Equation (1).
The second term comes from the situation when population B demands less than 1 — x by
mistake. Among these mistakes, demanding 0 is the least resistant one. Equation (2) can be
derived in a similar manner.

Consider the fraction

r (x)

2 = min{a ~ (@

u 4 u(x v(l—x 1—x—06 1—x
= g(c) )’aau(g—)ayb ( 5)1;(1(@ : 555(1_(3)}- (4)

As § | 0, the first term can be written as a “l((;)) and the third as b2 ((1 I)) while the second

S
and fourth terms become unbounded. So, lims ﬂ = min{a = i x)), v(11 x)} The efficient
convention with the highest minimum resistance is the efficient convention ( z,1 —z) with
u/(x) v (1—x)

maximizing the latter expression. As —+= is decreasing in x and is increasing in x
u(x) v(l—x) ’

the maximum is at the (unique) solution to a ((x)) bl;((ll ;f)) This is precisely the first-order

condition for the maximization of (u(x))?(v(1 — z)); i.e., the generalized Nash bargaining
solution.

Part (ii). When population A contains Lk individuals with & > 2, while population B
only contains L1 individuals, then the minimum number of mistakes needed to move away
from the efficient convention (x,1 — x) corresponds to the smallest integer greater than or

equal to mrd(x), where

% (z) = a min{ u(z);&()m—é)7 u?l(f)(;)}y (5)
T‘SB(az) = min{a, b} min{ U(l_wg(_lv_(i)_gﬁ_a) 1 :g)} and (6)
ro(z) = min{r (z),r5()}. (7)

With respect to Part (i), only the second equation has changed. The reason is that Lk
individuals draw their sample from their own population’s past play if k is even, while they
draw their sample from their rival population’s past play if k is odd. Since l;:A > 2, both
types of individuals are present in population A. Now it is not only the individuals from
population B who may respond to mistakes by population A; individuals from population A
themselves may also do so. For instance, an L2 individual from population A takes a sample
from their own population, estimates from this sample the possible choices by the population
B individual, and subsequently responds to that. This opens up the possibility of the L2
individual responding to the mistakes made by individuals in the own population. In case
their sample is smaller (i.e., a < b) they may estimate a shift in population B whereas none
of the individuals in population B would already consider a shift from the convention.

Note that for a > b, Equation (6) is identical to Equation (2), and we obtain the same
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outcome as in Part (i). Next, consider the case a < b, for which

r (x)

= min{a ~ (@

u [ u(x v(l—x)—v(l—z—§ v(l—2x
5 g(c) L a 6u((1—)5)’a ( 5)1)(1£a:) L a 515(1_(;)}- (8)

§
Now, lims g M simplifies to a mln{

tion to the equation u((w)) = ((11 x)) that precisely characterizes the standard Nash bargaining

'(z) v'(1—x)
u(x) ’v(l x)

} which is maximized at the (unique) solu-

solution.

Part (iii). Suppose we have sophisticated best responders in both populations. Now,
there exists an individual in each population who samples the past actions of the rival pop-
ulation and there exists an individual in each population who samples the past action of its
own population. The minimum number of mistakes needed to move away from the efficient

convention (z,1 — x) corresponds to the smallest integer greater than or equal to mr’(x),

where
1”?4(1') = min{a, b} min{ u(@) ;é()x 6), u?l(x)&)} 9)
r%(r) = min{a, b} min{” _xg(_l”ji)_z_é) v{l=z) } and (10)
r(x) = min{rd(z),r%(z)}. (11)

Suppose, without loss of generality that a < b. Then,

— s g wl@) —u(=4) (@)  v(d=z)—v(1-—z=0) v(l-z)
5 a min{= xauu;)? 7517(1x—5)> : ﬁfu(lv—x)z ’(va(l—zé)}’ (12)
such that limgjo M simplifies to a mln{ u(x), v(l x)} From Part (ii) we know that this
expression is maxnmzed at the standard Nash bargaining solution. |

Young (1993b) shows, in a two-population world with only L1 individuals, that the bargaining
power of a population is determined by its sample size, thereby implying that populations with
smaller sample sizes are in a disadvantageous position. Parts (ii) and (iii) of Proposition 2
show that the presence of sophisticated individuals, levels out the disadvantage caused by
drawing smaller samples. In particular, when both populations comprise of higher cognitive
types (i.e., Lk individuals with k£ > 2), any disadvantage borne out of unequal sample size is

“corrected” for and both populations end up with equal bargaining power.

4 General class of bimatrix games

In this section, we examine adaptive play between populations containing individuals of higher
cognitive level in bimatrix games. We use the stochastically stable set of Young’s adaptive
play model (i.e., with L1 individuals only) as a point of reference and denote this set by Q®°
for population A and B with sample sizes a and b respectively.

The next proposition deals with the case where only one of the populations (A) com-

prises of higher cognitive types. The situation where one population contains a share of L2
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individuals and both populations have an equal sample size has been captured in Matros
(2003).

Proposition 3. Suppose that the highest level of cognition in population A is Lk with k > 2,
while population B only contains L1 individuals. The stochastically stable set is described by
Q® if a > b and by Q¥ otherwise.

Proof. From Proposition 1, we know that curb sets are invariant to cognitive hierarchies
and that the unperturbed adaptive play process converges to a curb set.

Let ¢ be the minimum number of experimentations or mistakes required to transit from one
recurrent class to another when there are only L1 individuals in either population. Moreover,
let ¢/ be the minimum number of experimentations or mistakes required to transit from one
recurrent class to another when there are only L1 individuals in population B while population
A contains more sophisticated individuals (i.e., k4 > 2).

The set of stochastically stable states might change if the minimum number of experi-
mentations needed to transit from one recurrent class to another changes. Notice that if it is
possible to get from one recurrent class to another in £ experimentations when ks =1 and
kg = 1, then it is certainly possible as well with ¢ experimentations when ka>2and kg = 1,
since with positive probability only L1 individuals are chosen in population A. Therefore
¢ < £. The converse holds as well, i.e. £ < ¢'. To see this, note that Lk individuals, with
k > 2 odd, would play a strategy outside the prevailing minimal curb set only if there are
enough number of mistakes in the rival population’s past play. Thus, the minimum number of
mistakes required to induce a best response outside the prevailing minimal curb set does not
change. As a result, there are no transitions that take place in the presence of Lk individuals,
with k > 2 odd, that would not take place with L1 individuals. Lk individuals, with k£ > 2
even, sample from their own population’s past play and it would take a certain number of
mistakes in their own population’s past strategies for these individuals to play a best response
not contained in the prevailing minimal curb set.

When sample sizes are equal (i.e., a = b), the same number of mistakes are sufficient to
induce L1 individuals in population B to play a different strategy. Hence, the same transition
can be established in a process with only L1 individuals. When population A has a larger
sample size (i.e., a > b), L1 individuals in population B would in fact, owing to the smaller
sample size, respond to a lesser number of mistakes in population A. The minimum number
of experimentations for the transition involve L1 individuals only. Thus, the possibility of
a similar transition also exists with only L1 individuals in either population. So, the set of
stochastically stable states is Q% if a > b.

Now, suppose population A has a smaller sample size (i.e., a < b). Then, Lk individuals
in population A, with & > 2 even, react to the mistakes that appear in their own population

earlier than the individuals in population B. The L1 individuals in population B would
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have reacted to the same mistakes if they had a sample size equal to a. As a result, the
same transition would be effected with only L1 individuals in both populations, where both
populations are endowed with sample size a. Hence, the set of stochastically stable states is
Q4 if g < b. |

Proposition 3 implies that the presence of individuals with higher cognition only influences the
long run outcome when the population that they belong to is endowed with a smaller sample
size. In such a case, the effect of these individuals with higher cognition is to “decrease” the
sample size of the rival population to that of the own population. When both populations
comprise of higher cognitive types, the net effect is to “equalize” the sample size of both

populations. This is precisely what the next proposition states.

Proposition 4. Suppose both populations have individuals with a level of cognition of at least
2. The stochastically stable set is Q¥* = Qb

Thus the above two propositions generalize the result obtained for the evolutionary Nash

bargaining model.

5 Extensions

In this section we present two extensions of the model considered. The first considers an
alternative specification of level-k reasoning, where we assume an individual of level k to
believe the opponent may be of any lower level with positive probability. In the second
we assume that individuals of higher cognition (falsely) use their own utility function when

forming a believe on the rival population’s play.

5.1 Alternative specification of level-k reasoning

In this first extension, we replace the assumption that Lk individuals believe that the opponent
is of level kK — 1 and that each population comprises a positive mass of any lower type than
the maximum. Instead, we assume now that an Lk individual believes that the opponent is
of at most level k — 1, with positive mass on all cognitive levels up to k — 1.° Let us denote
this individual by L*k.

The L*k individual recognizes the fact that the rival could be of any level between and
including 1 and k& — 1 with positive probability and considers all best responses to any of
these possible opponents. This alternative specification of level-k reasoning does not affect the
results stated in Propositions 3 and 4 of the preceding section. To see this, it suffices to realize
that since an L*k individual places a positive weight on all lower cognitive types, she behaves
like an Lk (when a best response corresponding to the belief that the opponent is an L(k—1)

individual is chosen) or an L(k — 1) individual (when a best response corresponding to the

9Note that we do not explicitly require all these types actually to be contained in the rival population.
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belief that the opponent is an L(k — 2) individual is chosen), each with positive probability.
Hence, the minimum number of experimentations to transit from one minimal curb set to
another does not change in comparison to the model with Lk individuals.

Recall that we do not require L*k individuals to assign precise probabilities on the likeli-
hood to meet a rival of particular (lower) level of cognition, as is done in Stahl’s (1993) model
of sophistication and in Camerer et al.’s (2004) model of cognitive hierarchies. The latter
assumes individuals to perfectly know the fraction of lower cognitive types in the population,
such that the beliefs of individuals with higher level of cognition are closer to the actual pro-
portions in the population. It is straightforward to see that these restrictions on the beliefs,
do not affect the recurrent classes (which are the minimal curb sets) and the stochastically
stable set as long as the perceived probability to meet a type of any lower cognitive level is
strictly positive. For Camerer et al.’s (2004) model of cognitive hierarchies it would require
all lower cognitive types to be actually present in the rival population, thereby only allowing
for the cases for which \I%A — ch[ < 1.

5.2 Knowledge of utilities

One source of dissatisfaction with the model in the previous sections might be that individuals
with level of cognition higher than or equal to 2 know the utility function of the individuals
in the other population. In this subsection, we relax this assumption for the class of games
G’, where the strategy sets and the ordinal preferences are identical for all individuals in
either population.!® We assume that individuals only know their own (population’s) utility
function and not that of their possible rivals. This implies that though the ordinal preferences
are the same across the two populations, individuals in one population are not aware of the
cardinal utilities of the individuals in the other population. We denote the resulting individual
with level-k depth of reasoning by L’k. Note, though, that we retain the assumption that if a
population contains an L'k individual (k > 2), then it also contains an L'(k—1) individual. Let
1514 and /%3 denote the highest cognitive level in population A and population B respectively.

Like Lk individuals, L'k individuals draw samples from the strategies of the rival popu-
lation when k is odd and of the own population when k is even. So, L'l individuals behave
identically to L1 individuals: they best respond to the empirical distribution of strategies in
the sample drawn from the opponent population’s past play. L’2 individuals best respond
to their estimate of their rival’s behavior. Assuming that their rival is an L'l individual,
they sample from their own population’s past play to assess the strategies the rival may be
using. However, for this assessment they use their own utility function rather than that of

the rival.l!

OExamples outside this class for which the propositions below do not hold are easily constructed.

HPossible explanations of such a systematic behavioral trait include the ‘false consensus effect’ (Ross et al.,
1977) and self-projection (Buckner and Carroll, 2007).
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The following proposition claims that the resulting unperturbed adaptive play process is

invariant to this modification of the level-k model.

Proposition 5. In the class of games G’, if the history m is sufficiently large and the sampling
is sufficiently incomplete (i.e., a and b are sufficiently small), then the process of adaptive

play converges to a minimal curb set with probability one.
Proof. The proof is a trivial modification of the proof of Proposition 2. |

For further selection among the recurrent classes (i.e., the minimal curb sets) of the unper-
turbed process, we again adopt the notion of stochastic stability by studying the support
set of the limit of the stationary distribution of regular perturbations of the process when
the perturbation vanishes. Despite the invariance of the recurrent classes with respect to the
current alternative specification of level-k behavior, the stochastically stable set may change.
The next proposition illustrates how the stochastically stable state of the evolutionary Nash

bargaining game is changed.

Proposition 6. (i) Suppose that population A contains a fraction of L'k individuals for
k > 2, while population B is comprised by L'l individuals only. The stochastically stable state
is either the generalized Nash bargaining solution with the bargaining power of a population
equal to its own sample proportion, or the 50-50 division (equal split).

(i1) Suppose that both populations comprise of a fraction of L'2 individuals. The stochas-
tically stable state is either the generalized Nash bargaining solution with the bargaining power
of a population equal to its own sample proportion, a modified generalized Nash bargaining
solution with the bargaining power of a population equal to the other population’s sample

proportion, or the 50-50 division.

Proof. By Proposition 5, play settles in a minimal curb set, which corresponds to an
efficient convention. For stochastic stability we need to examine the relative ease or difficulty
of transiting from an efficient convention.

Part (i). An efficient convention (x,1 — z) can be disrupted by mistakes by population A
or by mistakes by population B.

First, consider mistakes by population A. One possibility is that these mistakes affect the

sample of L'l individuals in population B. For these individuals to change their demand the

v(l—z)—v(l—2z—06) v(l—=x
T Yiss - The

other possibility is that these mistakes are sampled by L’k individuals in population A with k

minimum number of mistakes required equals 7% ,(x) = b min{

even. For these individuals to change their demand the minimum number of mistakes required

L) ul o) wC=}. After all, these individuals would demand

something apart from z if they believe that an L'(k — 1) individual in population B is going

equals 79 4(x) = a min{ u(

to demand something else than 1 — . The latter possibility occurs if the L'(k — 1) individual
in population B believes that an L'(k — 2) individual in population A is going to demand
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something different than z, and so on. Ultimately, this can be traced to the belief that an L1
individual in population B changes the demand. If this does not happen, then none of the
higher cognitive individuals in any population believe that the action of the rival is going to
change. Individuals in population A form this belief when they sample a sufficient number of
mistakes in their own population. Since we are looking at the minimum number of mistakes
to move out of a convention, it suffices to examine the case when the mistakes in their own
population are such that the mistaken demands are just more than x (i.e., z + J) or when
they ask for the least amount (i.e., §). Suppose that ¢ mistakes of the first type have been
made. For an individual A to consider it viable that population B may change (to 1—x—d), ¢
should be such that u(1—xz—9) > % u(1 — ). This gives the least proportion of mistakes
necessary to be % =a %. The second term can be derived by considering the
second type of mistakes.

Next, consider mistakes by population B. These mistakes can only affect the sample of
L'k individuals in population A with k odd. For these individuals to change their demand

the minimum number of mistakes is required to be 7"?43(3”) = a min{ u(x);(ux()m_é)’ u(ul(f)&) }-

The minimum resistance of the efficient convention (z,1 — z) is thus given by 7°(z) =

min{r 4 (z), 7% 4 (z), 7% 5(x)}. Tt is easily seen (by using the same argument as in the proof

7”5((5 2) — min{a u(gf)) ,a 1;/((11—_;)) ,b 1;/((11__5))} . The first of these terms

is decreasing in z while the latter two are increasing in x. The stochastically stable efficient

rs(x)

allocation (z,1 — a‘c) is at the (unique) T that maximizes -, which is at the unique solution
to a L&) — min{a *- (1) 4 v'(1-2)
u(z) 1 )’ v(l

side is lowest at z, we either ﬁnd the 50-50 division, or the generalized Nash bargaining

of Proposition 2) that lims

} Depending on which of the two terms in the right hand-

solution with the power of the population equal to its own sample size.

Part (ii). An efficient convention (x,1 — x) can be disrupted by mistakes by population
A or by mistakes by population B.

First, consider mistakes by population A. One possibility is that these mistakes affect the
sample of L'k individuals in population B with k odd. For these individuals to change their de-

mand the minimum number of mistakes required equals 7’53 4(x) = b min{ U(l_mg(_lqi(i)_ 2=9) , Zﬁ:”g; }.

The other possibility is that these mistakes are sampled by L’k individuals in population A

with k£ even. For these individuals to change their demand the minimum number of mistakes

required equals 7% 4(7) = a min{ u(l= x)(_lu(;) z=9), Z 1 ?}

Next, consider mistakes by population B. One possibility is that these mistakes affect the

sample of L'k individuals in population A with k& odd. For these individuals to change their de-

mand the minimum number of mistakes required equals 7"?4 (%) = a min{ u(x);(uz()m_é) ’ u(ul(f)é) }-

The other possibility is that these mistakes are sampled by L’k individuals in population B

with k£ even. For these individuals to change their demand the minimum number of mistakes

required equals 7% 5 (7) = b min{v(x);g);)x_é), vzjl(f)&) }.

The minimum resistance of the efficient convention (z,1 — z) is thus given by rf(z) =
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min{ry , (), 7% 4 (), 7% 5(x), 7% 5(2)}. Tt is easily seen (by using the same argument as in the

proof of Proposition 2) that lims o T‘ngm) = min{a 1;((;)) ,a 1;((11:;)) ,b 1;((;)) ,b 7;((11:;:))} . The first
and third of these terms are decreasing in x while the other two are increasing in . The

rs(x)
)

stochastically stable efficient allocation (Z,1 — ) is at the (unique) Z that maximizes

u(z v'(z : u'(1—z v (l—z .
u((x)) ’ b U((z))} = mln{a u((l—m)) ; b U((l—a:)) } Dependmg

on which of the two terms in the two sides of the equation are lowest at Z, we either find the

which is at the unique solution to min{a

50-50 division, the generalized Nash bargaining solution with the power of the population
equal to its own sample size, or the generalized Nash bargaining solution with the power of

the population equal to the other population’s sample size. [

Proposition 6 shows that this alternative specification of level-k behavior has a severe quali-
tative impact on the long run outcome. The L’k specification allows for the equal split and an
inverted version of the generalized Nash bargaining solution to be feasible long run outcomes.
This latter is not a long run outcome in the Lk specification, while the former was found only

when the cardinal utilities of the populations were identical up to an affine transformation.

6 Concluding remarks

In this paper we investigated the effect of sophisticated agents on adaptive play. Apart
from the more usual way of defining sophisticated agents as higher order best responders
(Lk individuals), we introduced an alternative notion that does not assume (higher order
best responding) individuals to be aware of the utility function of the individuals in the
rival population (L'k individuals). We find that the unperturbed adaptive play process, with
either notion of sophistication, converges to a minimal curb set. The intuition for this result is
simple. With only L1 = L’1 individuals, best response adaptive play converges to a minimal
curb set in a finite number of steps. So, since with positive probability only simple best
responders are chosen for any finite number of steps, the process converges to a minimal curb
set. By the construction and definition of a minimal curb set, higher order best responses are
contained in it. Hence, any strategy chosen by a more sophisticated best responder would be
in the minimal curb set.

In addition to the focus on the recurrent classes, we also considered the effect of these more
sophisticated best responders on the stochastically stable outcomes relative to Young’s setting
with only simple best responders. We find that higher level of sophistication has no effect when
the population containing these has the same or higher sample size. However, sophistication
has a differential effect when the population holding these individuals has a strictly smaller
sample size. The effect is as if to reduce the sample size of the rival population to that of the
own population. This effect is already obtained by the presence of a fraction of L2 individuals
and the addition of even higher cognitive types have no further effect. Again, the intuition is

simple. Higher sophistication has an influence only when it results in a formation of a belief
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that the rival is going to change her behavior, and the sophisticated best responders actually
changing their own behavior on basis of that belief. An individual needs to be at least of level
2 to form such a belief. Only when the sophisticated best responders have a smaller sample
size the belief is “unfounded”, which is why that is the only situation in which they have
a differential effect on the stochastically stable outcomes. When both populations have L2
individuals, then it is as if we are dealing with the basic adaptive play model of Young with
both populations having equal sample size. The presence of L2 individuals on both sides,
level out any differences in sample size. And, again, more sophistication beyond L2 types
has no additional effect — as mentioned earlier, all higher beliefs formed can be traced to
the behaviour of an L1 type individual. With L1 and L2 individuals, the mistakes in either
populations’ play that may give rise to different beliefs are accounted for. Hence, even higher
cognition has no effect.

We hazard a guess and suspect that these properties are transferable to a setting with
multiple populations. First, convergence to a minimal curb set is clearly obtained for any
number of populations and any distribution of cognitive types across populations. Moreover,
regarding stability against experimentation, still all plays of strategies outside a prevailing
curb set can be traced to either a level-1 individual in some population to change play with
positive probability (based on a sufficient number of mistakes), or there should be a belief by
some higher order type that this is about to happen.

Throughout the paper, we have restricted attention to the best reply dynamic and have
ignored the weakly better reply dynamic that is less demanding with respect to the individuals’
rationality. One attractive feature of considering weakly better replies is that under a wide
class of evolutionary dynamics, a set is asymptotically stable if and only if it is closed under the
better reply correspondence (Ritzberger and Weibull, 1995, Thm. 1). With level-1 individuals,
play converges to a set that is closed and fixed under the better reply correspondence. If we
incorporate the element of higher cognition, then for the very same reasons as in Proposition 1,
this result is unaffected. However, it is of course possible that the set of stochastically stable
states varies.

Having identified the effect that higher cognition has on adaptive play, the next question
is their qualitative impact: Do more sophisticated individuals leave their population better
off 7 Thereto, suppose that population A consist of L1 and L2 individuals, while population B
has L1 individuals only. Suppose further that the sample size of population B is greater than
that of population A (a < b), so that by Proposition 4, the stochastically stable states are the
same as in a process where both populations have simple best responders only and the sample
sizes are equal. We argue that depending on the payoffs of the game, this outcome may be
better or worse for population A — the population with the clever agents. That population
A may benefit from the presence of clever agents was seen in the Nash bargaining model.

However, this is not a universal phenomenon. To this end, we draw attention to an example
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from Young (1998, Ch. 5) that illustrates that having less information (i.e., a smaller sample
size and therefore higher sensitivity to mistakes) may be an advantage. Consider the game
in Figure 1 and assume that the row population has a sample size of s while the column

population has a sample size of s’, with 1% s < 1—77 s’. When both populations have simple best

L R
U [10,7 0,0
D| 0,0 910

Figure 1: Example

responders only, then the outcome with payoffs (10, 7) is stochastically stable — i.e., the row
population is better off. However, if the row population contains a fraction of sophisticated
best responders (i.e., L2 individuals), then the outcome with payoffs (9, 10) is stochastically
stable. Hence, the row population suffers from the presence of higher cognitive individuals in
their population.

An interesting qualitative impact of sophistication comes from Matros (2003): Sophistica-
tion might influence the distribution of strategies inside the stochastically stable minimal curb
set(s). This is illustrated by Matros (2003) in the game of Matching Pennies, where one of the
populations had a fraction of L2 individuals. In the long run outcome, these L2 individuals
have a positive expected payoff while the L1 individuals in both populations have a negative
expected payoff. We suspect that even though sophistication beyond L2 has no effect on
the stochastically stable minimal curb set(s), similar features may be observed. There may
also be differences in the speed of convergence. The finding of Matros (2003) raises another
interesting issue: Will more sophisticated types end up with a payoff at least as large as that
of less sophisticated types? We suspect that this will not generally be the case in a model
where there are at least L2 types on both populations as the expected payoffs will depend

heavily on the precise proportion of each type in each population.
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