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Abstract

Inspired by the behavior in repeated guessing game experiments, we study adaptive play

by populations containing individuals that reason with different levels of cognition. Indi-

viduals play a higher order best response to samples from the empirical data on the history

of play, where the order of best response is determined by their exogenously given level

of cognition. As in Young’s model of adaptive play, (unperturbed) play still converges to

a minimal curb set. However, with the random perturbations of this (higher order) best

response dynamic, the stochastically stable states obtained may now be different, but in a

deterministic manner. Perhaps counter-intuitively, higher cognition may actually be bad

for both the individual with higher cognition and his parent population.
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1 Introduction

One of the primary focuses of game theory is to model individual decision making in settings

of strategic conflict. The more traditional workhorse employed to this end has been the

assumption of rationality and common belief of it, which at times might be a very demanding

requirement. Binmore (1987) discusses fundamental issues with this assumption, including

the inconsistency that it cannot be replicated by a Turing machine. Furthermore, experiments

on human subjects reveal that for certain applications, the assumptions of common belief of

rationality and its associated implication of an infinite depth of reasoning appear too strong,

resulting in a disparity between theoretical predictions and empirical observations in the

laboratory. This has generated considerable interest in a paradigm where individuals are

either capable of, or make use of finite depth of reasoning. This could be either because of

cognitive limitations on individuals or because of a belief that the co-player in the strategic

situation will employ finite depth of reasoning, in which case it is also optimal to do so.

To illustrate this, consider the guessing game experiment of Nagel (1995) wherein individ-

uals had to guess the number in the interval [0, 100] which would be the closest to p < 1 times

the mean of all guesses. Under common belief of rationality, the only rationalizable choice

is to guess 0. The empirical data of the experiment, though, suggests that only a handful

of the subjects guess 0. A considerable amount of the chosen strategies can be described

by what is called “level-k” behavior. Here, level-1 behavior refers to best responding to the

belief that mean of the guesses is going to be clustered around 50. This could be either due

to the salience of the number 50 (Schelling salience) or because of the belief that the guesses

of the others can be approximated by a uniform distribution over the interval [0, 100]. In ei-

ther case, the optimal guess arising out of level-1 behavior is 50 p. Level-2 behavior supposes

that the others will employ level-1 reasoning and guess 50 p. Consequently, it is optimal to

guess 50 p2. Higher order level-k behavior is defined iteratively with level-k behavior being

identified with guessing 50 pk. Nagel (1995) finds that most of the subjects exhibit level-1

and level-2 behavior. The decisions in subsequent repetitions show a declining trend in the

guesses. Two mutually non-exclusive explanations are an increase in the subjects’ depth of

reasoning and a shift in reference point for the most primary belief. Nagel’s (1995) data does

not provide any evidence for the former explanation and leans strongly towards the second

explanation: subjects seem to use the mean of the previous period as the reference point.

A fair amount of theoretical and experimental studies has been directed towards the

development of models that explicitly take into account the beliefs of individuals about other

individuals’ strategic decisions. For example, Stahl (1993) and Stahl and Wilson (1995)

present a theoretical model of such players. The latter use a series of experiments to test for

this pattern. Camerer et al. (2004) develop a cognitive hierarchy model in which each player

assumes that she is the most sophisticated type and that the other individuals are of lower
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cognition. These models seem to explain the pattern of play in initial rounds of experiments

– such as the one of Nagel (1995) – fairly well. They also are found to be robust to a wide

specification of games: cf. Stahl and Wilson (1994, 1995), Crawford and Iriberri (2007), Wang

et al. (2010) and Coricelli and Nagel (2009).

Our interest, on the other hand, is to examine the effect of such a hierarchical model of

players on the long-run process. Thus, not only are we interested in a framework where we

begin with the hypothesis that individuals come in varying degrees of sophistication, but allow

the different levels of cognition to operate on past experience as indicated by the empirical

data of play. While the sophistication of a particular individual does not change over time,

individuals pay attention to the way in which the game has unfolded in the recent past. The

importance of modeling this feature is also emphasized in Binmore (1988). Although his main

focus is on, what he calls, the “eductive process” (i.e., the cognitive process of the individual

during the decision-making) rather than the “evolutive process”, he recognizes the importance

of the latter as well. In this paper, we consider a process which, while evolutionary in nature,

also has the flavor of the eductive process. We believe that Young’s (1993a, 1998) model of

adaptive play provides a very convenient platform to incorporate these elements.

In Young’s model of adaptive play, the interaction is modeled as a population game,

where a population of players is associated with a specific role in a game. Populations have,

at their disposal, a record of recent history of play. In each period, an individual is drawn

randomly from the parent population to play the game. The individual samples incompletely

and without replacement from the past play of the rival population and plays a best response

to the empirical distribution of strategies as revealed by the sample. In terms of the level-

k model, this means that the individuals, by best responding to the empirical distribution

available to them, exhibit level-1 behavior. Using an argument similar to Hurkens (1995),

Young (1998) demonstrates that play converges almost surely to a minimal curb set.1 The

minimal curb sets form the recurrent classes (absorbing sets) of the dynamic process described

by simple best response behavior. In order to select amongst the minimal curb sets (which

may be numerous), the notion of stochastic stability is adopted.

We introduce the element of sophistication in this model of adaptive play in order to

study the effect of higher cognition on long run outcomes. Young’s model, with only simple

(best responding) players, serves as the point of reference. We postulate that populations are

comprised of individuals of varying levels of sophistication.2 The most primitive behavioral

trait is described by the level-1 individuals referenced to above.3 A level-2 individual holds the

1The minimal curb set is, loosely speaking, a set which contains all its best responses and there is no proper
subset contained in it with the same property. This concept was first introduced by Basu and Weibull (1991).

2Mohlin (forthcoming) shows that it is possible for evolutionary learning processes to converge to a state
where different cognitive types co-exist.

3For the purpose of nomenclature, we retain the associated terminology of the level-k model, even though
we step outside the boundaries of it. Our focus is the long-run behavior, whereas the level-k model is meant
for the purpose of explaining initial play.
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belief that the rival is a level-1 type. Consequently, she samples from the actions of the own

population to estimate the best response of a level-1 individual in the rival population and

best responds to the estimate just formed. A level-3 individual plays a best response to the

belief that the rival is of level-2. Hence, the level-3 individual samples from the actions of the

rival population to estimate the best response of a level-1 individual in the own population.

This is then used to estimate the best response of a level-2 individual in the rival population.

The level-3 individual plays a best response to this estimate of the strategy that might be

used by the level-2 individual of the rival population. This process is iterated one step more

for each higher level of sophistication. So, as in Nagel (1995), each player assumes that the

other players are one step down on the cognitive scale.

In Proposition 1, we show that the convergence to a minimal curb set, as shown by

Young (1998) for the setting with only simple players, is invariant to the introduction of any

higher level of sophistication in any population. A refinement of the minimal curb sets of

the game may be obtained by considering an infinitesimally small probability of mistakes or

experimentation, whereby individuals choose any strategy (and not necessarily a best response

of some order). This selects the set of stochastically stable states. The possibility of mistakes

or experimentation now makes transition across minimal curb sets possible and the minimal

curb sets that are most “stable” to such mistakes comprise the set of stochastically stable

states. In Propositions 2–4, we find that the stochastically stable set may be sensitive to the

composition of cognitive types in the populations. Proposition 2 shows this for the specific

instance of the evolutionary Nash bargaining game while Propositions 3 and 4 do so for generic

games.

In Young (1993b) it is shown that in the evolutionary Nash bargaining game with sim-

ple players only, the long-run outcome is the generalized Nash bargaining solution with the

bargaining power being proportional to the populations’ own sample size. The intuition is

simple: the smaller the sample size, the higher is the responsiveness to mistakes in the other

population, leading to a smaller bargaining power.4 In Proposition 2 we show that the intro-

duction of more sophisticated individuals in a single population has no effect on the long-run

outcome in case this population has the larger sample size, but that the standard Nash bar-

gaining solution (that is, equal bargaining power) is obtained as long-run outcome in case

this population has a smaller sample size. This effect has already been shown by Sáez-Mart́ı

and Weibull (1999) when allowing for “clever” individuals (that is, of level-2) on one side.

They conclude that a grain of cleverness compensates for the lower bargaining power from

smaller sample size but cleverness confers no additional benefit apart from that. This finding

is driven by the fact that level-2 individuals best respond to a best response to the sample of

their own population. Via their believes, the level-2 individuals, when endowed with a smaller

4Although in the Nash bargaining game a higher sample size confers a benefit to the population, depending
on the payoff structure it can be a bane as well – see Section 6 for more details.
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sample size, make the rival population appear more responsive to mistakes made by the own

population. We show that there are no benefits of adding individuals of even higher level of

cognition. Moreover, we show that if both populations host sophisticated individuals, then

we obtain the standard Nash bargaining solution as the stochastically stable state.

In Proposition 3 we show that for generic games, the introduction of a fraction of so-

phisticated individuals in one population has an effect on the stochastically stable set only

if the population with these individuals has a smaller sample size. Proposition 4 claims that

if both populations host individuals with at least level-2 cognition, then irrespective of the

relative sample size, the stochastically stable set is the same as that in Young’s adaptive play

model with both populations having equal sample size. Thus, the effect of higher cognition

is to “decrease” the sample size of the rival population to that of the own population. Ma-

tros (2003) already showed this for the situation where one population has level-2 individuals

and both populations have the same sample size. Our result extends Matros (2003), as we

allow for even higher levels of cognition, populations to have unequal sample sizes, and both

populations to host individuals of level-2 or higher.

In the following section, we specify the model of adaptive play with higher cognitive

individuals in more detail and state that this process of adaptive play converges to a minimal

curb set. In Section 3 and Section 4, we study the impact of higher cognitive types on the

long-run outcome for the evolutionary Nash bargaining game and general games respectively.

In Section 5, we provide a discussion on two possible alternative specifications of our model.

In our model we assume that an individual of a particular level believes she is playing someone

of one level lower. In the first alternative specification, we show that our results are robust to

the alternative specification where she believes her rival to be of any lower level – as is assumed

for instance in Stahl (1993) and Camerer et al. (2004). In the second alternative specification,

for a specific class of games, we relax the knowledge (individuals within) populations may

have about cardinal preferences of (individuals within) the rival population. As a result,

higher cognitive types use their own utility function while forming a belief about the rival’s

play. Binmore (1988) mentions that such form of introspection might be a plausible way

in which higher cognition operates. We find that play still converges to a minimal curb

set (as ordinal preferences do not change), but the stochastically stable set may change (as

the sensitivity to mistakes may change): in the evolutionary Nash bargaining game, the

generalized Nash bargaining solution with bargaining power proportional to the rivals’ sample

size and the 50–50 split may become feasible long-run outcomes. Finally, we close with a

discussion of the implication of our results in Section 6. Amongst other things, we discuss the

qualitative impact of higher cognition. The distribution of strategies in the long-run outcome

might be affected, possibly resulting in payoff differences across individuals within and across

populations. Further it is, perhaps counter-intuitively, shown that an entire population can

be worse-off by the presence of more cognitive individuals.
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2 Preliminaries

There are two finite populations A and B and each population is assigned a specific role in

a specified two-player game that is played recurrently between randomly selected individuals

from the two populations. Each individual has a positive probability of representing the

population that she belongs to.5 The selected individual from population A (B) has to

choose a strategy xA (xB) out of a finite set of strategies XA (XB). The pair of chosen

strategies (xA, xB) ∈ XA×XB yields a payoff of πA(xA, xB) and πB(xA, xB) to the individual

from population A and B respectively. We assume each population to be homogenous, i.e. all

individuals in a population have the same utility function. The only heterogeneity we assume

within a population is in the level of sophistication.

We assume individuals play adaptively. Both populations have access to the strategies

chosen in the last m periods of play and individuals in population A (B) can draw a sample

of proportion a (b) – i.e., of length am (bm) – without replacement. We assume each possible

sample to have a positive probability of being drawn, but do not require all samples in the

history to be equally likely to be drawn.

We identify the empirical distribution over chosen strategies with level-0 (L0) behavior.

So, a level-1 (L1) individual plays a best response to her sample from the rival population’s

strategies.6 Next, a level-2 (L2) individual holds the belief that her rival is L1 and attempts

to best respond to the strategy that the L1 individual of the rival population might choose.

As a result, the L2 individual samples from her own population’s past play, formulates the

best response to the drawn sample7, adopts this as estimate of the strategy that the rival

L1 individual might use, and plays a best response to it. The behavior of any individual of

higher level of sophistication is described analogously.

It is evident from the above that an Lk individual, with k odd, draws a sample from

the strategies of the rival population. In contrast, an Lk individual, with k even, draws a

sample from the strategies of the own population. Following that, the sample is processed in

accordance to the cognition of the individual.

At this point, we make the assumption that if a population contains an Lk individual with

k ≥ 2, then it also contains an L(k−1) individual.8 So, we do not allow the entire population

to be be composed of, say, L4 individuals only. And, in case a population contains an L4

individual, then it also contains at least one L3, L2 and L1 individual. This permits us to

describe the cognitive types present in a population by the most sophisticated individual.

We use k̂A and k̂B to refer to the highest cognitive level in population A and population B

5We do not require the probability to be selected to be equal for each individual in a population.
6In cases of multiple best responses, we always assume each best response to be chosen with positive

probability, not necessarily with equal chance.
7In order to do so, it is necessary that the L2 individual possess knowledge of the utility function of the

rival population.
8In Section 5 we replace this assumption with an alternative one.
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respectively.

Given any arbitrary history on m periods of play, the adaptive process described above

yields a Markov process on the state space Ω = (XA×XB)
m, where the states are the possible

histories of length m. Let this (unperturbed) process, for sample proportions a and b and

highest levels of sophistication k̂A and k̂B, be denoted by Pm,a,k̂A,b,k̂B (0).

Let Ci be a nonempty subset of Xi (i = A,B). We denote the set of probability dis-

tributions over Ci by ∆(Ci). Moreover, by BRi(Cj), we denote the set of strategies in Xi

that consists of the best replies to any mixture in ∆(Cj) for the individuals in population

i (j 6= i). Now, we can define the notion of (minimal) curb sets, which is due to Basu and

Weibull (1991). The product set C = CA × CB is closed under best replies (or C is a curb

set) if BRA(CB)×BRB(CA) ⊆ C. Such a curb set is minimal if it does not properly contain

a curb set.

Proposition 1. If the history m is sufficiently large and the sampling is sufficiently incom-

plete (i.e., a and b are sufficiently small), then the minimal curb sets are the recurrent classes

of the process of adaptive play Pm,a,k̂A,b,k̂B (0).

Proof. The proof for this is essentially the same as in Young (1998, Thm. 7) and Matros

(2003, Thm. 1). Young (1998) shows that best response adaptive play converges to a minimal

curb set in a finite number of steps when there are only L1 individuals in either population.

Since in our setting there is for any finite number of periods, a positive probability that only

L1 individuals are chosen during these periods, we know that our process converges to a

minimal curb set. Matros (2003) shows that a fraction of L2 individuals in one population

does not have any disruptive effect on the convergence to a minimal curb set. The idea

is that, by definition of the minimal curb set, higher order best responses are contained

in it. Using the same arguments, we can show that the same holds for Lk individuals in

either population. After play converges to a minimal curb set (by successively drawing L1

individuals), responses of all higher cognitive types are contained in it such that play never

leaves it. Furthermore, it is possible to transit from one state in the recurrent class to another

in finite time by considering the event that only L1 individuals are chosen. The result then

follows from Young (1998). �

The model of adaptive play so far has been built on the assumption that individuals are

simple or sophisticated best responders. This results in the convergence to a minimal curb set.

So, minimal curb sets represent the recurrent classes of the (unperturbed) Markov process.

In order to allow for transits from one minimal curb set to another, we need to perturb

the process. For the perturbed process, we assume that each individual has a probability

ε to experiment or to commit a mistake; that is, they may choose any strategy – even

those that are not a best response or a best response of a best response and so on, to any

conceivable sample drawn from the history of past play. These experimentations induce the
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resulting perturbed process of adaptive play Pm,a,k̂A,b,k̂B (ε) to be ergodic, such that for each

ε > 0 a unique stationary distribution exists; that is, a unique solution µ(ε) to the equation

µ · Pm,a,k̂A,b,k̂B (ε) = µ. The stochastically stable set is defined to consist of precisely those

states that receive a positive weight in the limiting stationary distribution µ∗ = limε↓0 µ(ε).

The stochastically stable set is a subset of the set of recurrent classes (or, in the present

case, the minimal curb sets) of the unperturbed adaptive process Pm,a,k̂A,b,k̂B (0). Intuitively,

this set consists of the minimal curb sets that are easier to reach and more difficult to transit

from with (a series of) experimentations. We now make an important observation. We are

interested in the minimum number of experimentations that thereafter make a transition

from one minimal curb set to another possible via the best-response dynamic. The best

responses of Lk individuals, with k odd (even), are only affected by a sufficient number of

experimentations in the rival (own) population. For higher cognitive types, an Lk individual

will have a best response outside the prevailing minimal curb set only if she believes that the

L(k − 1) individual in the rival population will do so. But this happens if she believes that

the L(k − 1) individual believes that an L(k − 2) individual will do so. Ultimately, this can

be traced to the belief that an L1 individual in some population chooses a strategy outside

the recurrent class. If this does not happen, then none of the higher cognitive individuals

in any population believe that the actions of the rival is going to change. The belief that

an L1 individual in the rival (own) population does so, induces a change in behavior by Lk

individuals, with k odd (even).

3 The evolutionary Nash bargaining game

The Nash bargaining game is a two-player game where each of the two players demands a

portion of some good (or, amount of money). If the total amount requested by the players is

less than that available, both players get their request. If their total request is greater than

that available, neither player gets their request. In this section we consider the Nash bar-

gaining game in an evolutionary framework, played recurrently by randomly selected players

from two finite populations.

Let A and B be two populations consisting of a finite number of individuals. In each period

t, one individual is selected at random from each population to play the Nash bargaining game.

Simultaneously and independently, each individual announces a demand from the feasible set

of demands D(δ) = {δ, 2δ, ..., 1 − δ}, say xtA and xtB. Each of them receives their respective

demand if the two demands sum up to not more than the whole (that we normalize to one); i.e,

if xtA+xtB ≤ 1. Otherwise, both receive nothing. We assume that all individuals in population

A have the same concave, strictly increasing, differentiable von Neumann-Morgenstern utility

function u : [0, 1] → R with u(0) = 0. Similarly, we assume all individuals in population B to

have a utility function v : [0, 1] → R with the same properties.
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At period t, individuals α and β are chosen from populations A and B. Both individuals

have access to a record of play of the last m periods: ωt = ((xt−m
A , xt−m

B ), . . . , (xt−1
A , xt−1

B )) ∈

Ω = (D(δ) ×D(δ))m. Individual α can draw a sample of size am of demand pairs (xτA, x
τ
B)

from the last m periods of play without replacement. Similarly, individual β draws a sample

of size bm of demand pairs (xτA, x
τ
B) from the last m periods of play without replacement.

We do not require each pair to be drawn with equal probability, but it is essential that any

sample of the appropriate size can be drawn. Next, individual α (β) makes a demand xtA

(xtB) that maximizes her expected payoff against the empirical distribution of demands as

given by the sample drawn (given her depth of reasoning).

A state ω ∈ Ω is a convention if it consists of some fixed division (x̄A, x̄B) ∈ D(δ)×D(δ)

repeated m times in succession and we call it an efficient convention if, in addition, x̄A+x̄B =

1. In Theorem 1 of Young (1993b) it is shown – for populations solely consisting of L1

individuals – that if at least one individual in each population samples at most half of the

record of play, then (from any initial state) the process converges almost surely to an efficient

convention. This is actually a corollary of Proposition 1, as the set of efficient conventions

coincides with the set of all minimal curb sets. In the remainder of this section, we will focus

on the (set of) stochastically stable state(s) as the precision of demand δ goes to zero.

In Young (1993b) it is shown that when both populations consist solely of L1 individuals

(k̂A = k̂B = 1), the stochastically stable state is the generalized Nash bargaining solution

with bargaining power proportional to the sample sizes, which is the efficient convention

given by the division (x̄A, x̄B) that maximizes the Nash product (u(xA))
a(v(xB))

b subject to

xA, xB ∈ [0, 1] and xA + xB = 1.

Sáez-Mart́ı and Weibull (1999) introduce, in one of the populations, clever agents (L2 indi-

viduals) who possess knowledge of the utility function of the members of the rival population.

These clever players estimate the best reply of the opponent by sampling from the record of

their own population and then best reply to this estimate. Let, without loss of generality,

these clever individuals be members of population A, such that k̂A = 2 and k̂B = 1. It is

demonstrated that if the proportion of these clever agents is less than 1, then the stochasti-

cally stable division – as the precision of demand δ tends to zero – is the generalized Nash

bargaining solution with the bargaining power proportional to the sample sizes a and b if

a > b, and to the standard Nash bargaining solution if a ≤ b. So, interpreting the sample

size in Young’s model as a measure of the bargaining power of a population, cleverness in a

population has the effect of compensating for lower bargaining power arising due to smaller

sample size, but it does not have an effect if the clever population has a larger sample size

(and hence higher bargaining power).

We relax the restriction on the level of sophistication of the individuals in the populations

in two directions. First, we allow the highest level of cognition in population A to be larger

than two: k̂A > 2. Second, we allow the possibility of clever (and even more sophisticated)
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agents in the B population as well: k̂B ≥ 2.

We find that if population B has only L1 individuals while population A has Lk individuals

with k > 2 (i.e., k̂A > 2 and k̂B = 1), then nothing changes with respect to the result of

Sáez-Mart́ı and Weibull (1999). However, when population B also holds individuals of level of

sophistication larger than one (i.e., k̂A, k̂B ≥ 2), then the standard Nash bargaining solution

is the unique stochastically stable state.

We summarize all results in the following proposition, where part (i) is due to Young

(1993b) and part (ii) is demonstrated for L2 individuals in one population by Sáez-Mart́ı and

Weibull (1999).

Proposition 2. (i) Suppose that both populations comprise of L1 individuals. The stochas-

tically stable state is then the generalized Nash bargaining solution, with the bargaining power

of each population equal to the sample proportion of each population.

(ii) Suppose population A has a fraction of sophisticated best responders. Then, the

stochastically stable state is the generalized Nash bargaining solution if a > b. Otherwise,

the stochastically stable state is the standard Nash bargaining solution.

(iii) Suppose both populations have sophisticated best responders. The stochastically stable

state is the standard Nash bargaining solution.

Proof. With unperturbed adaptive play, the play converges to an efficient convention. This

is because the minimal curb sets of the games coincide with the efficient conventions. To

identify the stochastically stable state, we need to look at the minimum number of experi-

mentations needed to transit from one convention to another.

Part (i). When there are only L1 individuals in each population, then the minimum

number of mistakes needed to move away from the efficient convention (x, 1−x) corresponds

to the smallest integer greater than or equal to mrδ(x), where

rδA(x) = a min{u(x)−u(x−δ)
u(x) ,

u(x)
u(1−δ)}, (1)

rδB(x) = b min{v(1−x)−v(1−x−δ)
v(1−x) ,

v(1−x)
v(1−δ)}, and (2)

rδ(x) = min{rδA(x), r
δ
B(x)}. (3)

To explain this, note that there are two ways that we can move away from a convention. One

is when individuals from population B make mistakes and these mistakes are sampled by

individuals in population A. The other is when individuals from population A make mistakes

and these mistakes are sampled by individuals in population B. Equation (1) captures the

former possibility; Equation (2) the latter.

There are two mistakes an individual of population B can make: demanding an amount

more than 1−x and demanding an amount less than 1−x. Amongst the demands greater than

1−x, the least resistant one is to ask for δ more: i.e., demanding 1−x+δ. A best responding

individual of population A would shift to asking x − δ, when this mistake has been made

10



sufficiently frequent. Let ℓ represent the least number of times population B has to make

this mistake in order to displace the convention. Given that population A individuals draw

a sample of size am, they may shift to asking x− δ when am−ℓ
am

u(x) ≤ u(x− δ). This gives

the least proportion of mistakes ℓ
m

= a
u(x)−u(x−δ)

u(x) , which is one of the terms in Equation (1).

The second term comes from the situation when population B demands less than 1 − x by

mistake. Among these mistakes, demanding δ is the least resistant one. Equation (2) can be

derived in a similar manner.

Consider the fraction

rδ(x)
δ

= min{a u(x)−u(x−δ)
δ u(x) , a

u(x)
δ u(1−δ) , b

v(1−x)−v(1−x−δ)
δ v(1−x) , b

v(1−x)
δ v(1−δ)}. (4)

As δ ↓ 0, the first term can be written as a
u′(x)
u(x) and the third as b

v′(1−x)
v(1−x) , while the second

and fourth terms become unbounded. So, limδ↓0
rδ(x)
δ

= min{a u′(x)
u(x) , b

v′(1−x)
v(1−x) }. The efficient

convention with the highest minimum resistance is the efficient convention (x̄, 1 − x̄) with x̄

maximizing the latter expression. As u′(x)
u(x) is decreasing in x and v′(1−x)

v(1−x) is increasing in x,

the maximum is at the (unique) solution to a
u′(x)
u(x) = b

v′(1−x)
v(1−x) . This is precisely the first-order

condition for the maximization of (u(x))a(v(1 − x))b; i.e., the generalized Nash bargaining

solution.

Part (ii). When population A contains Lk individuals with k ≥ 2, while population B

only contains L1 individuals, then the minimum number of mistakes needed to move away

from the efficient convention (x, 1 − x) corresponds to the smallest integer greater than or

equal to mrδ(x), where

rδA(x) = a min{u(x)−u(x−δ)
u(x) ,

u(x)
u(1−δ)}, (5)

rδB(x) = min{a, b} min{v(1−x)−v(1−x−δ)
v(1−x) ,

v(1−x)
v(1−δ)}, and (6)

rδ(x) = min{rδA(x), r
δ
B(x)}. (7)

With respect to Part (i), only the second equation has changed. The reason is that Lk

individuals draw their sample from their own population’s past play if k is even, while they

draw their sample from their rival population’s past play if k is odd. Since k̂A ≥ 2, both

types of individuals are present in population A. Now it is not only the individuals from

population B who may respond to mistakes by population A; individuals from population A

themselves may also do so. For instance, an L2 individual from population A takes a sample

from their own population, estimates from this sample the possible choices by the population

B individual, and subsequently responds to that. This opens up the possibility of the L2

individual responding to the mistakes made by individuals in the own population. In case

their sample is smaller (i.e., a < b) they may estimate a shift in population B whereas none

of the individuals in population B would already consider a shift from the convention.

Note that for a > b, Equation (6) is identical to Equation (2), and we obtain the same
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outcome as in Part (i). Next, consider the case a ≤ b, for which

rδ(x)
δ

= min{a u(x)−u(x−δ)
δ u(x) , a

u(x)
δ u(1−δ) , a

v(1−x)−v(1−x−δ)
δ v(1−x) , a

v(1−x)
δ v(1−δ)}. (8)

Now, limδ↓0
rδ(x)
δ

simplifies to a min{u′(x)
u(x) ,

v′(1−x)
v(1−x) }, which is maximized at the (unique) solu-

tion to the equation u′(x)
u(x) = v′(1−x)

v(1−x) , that precisely characterizes the standard Nash bargaining

solution.

Part (iii). Suppose we have sophisticated best responders in both populations. Now,

there exists an individual in each population who samples the past actions of the rival pop-

ulation and there exists an individual in each population who samples the past action of its

own population. The minimum number of mistakes needed to move away from the efficient

convention (x, 1 − x) corresponds to the smallest integer greater than or equal to mrδ(x),

where

rδA(x) = min{a, b} min{u(x)−u(x−δ)
u(x) ,

u(x)
u(1−δ)}, (9)

rδB(x) = min{a, b} min{v(1−x)−v(1−x−δ)
v(1−x) ,

v(1−x)
v(1−δ)}, and (10)

rδ(x) = min{rδA(x), r
δ
B(x)}. (11)

Suppose, without loss of generality that a ≤ b. Then,

rδ(x)
δ

= a min{u(x)−u(x−δ)
δ u(x) ,

u(x)
δ u(1−δ) ,

v(1−x)−v(1−x−δ)
δ v(1−x) ,

v(1−x)
δ v(1−δ)}, (12)

such that limδ↓0
rδ(x)
δ

simplifies to a min{u′(x)
u(x) ,

v′(1−x)
v(1−x) }. From Part (ii) we know that this

expression is maximized at the standard Nash bargaining solution. �

Young (1993b) shows, in a two-population world with only L1 individuals, that the bargaining

power of a population is determined by its sample size, thereby implying that populations with

smaller sample sizes are in a disadvantageous position. Parts (ii) and (iii) of Proposition 2

show that the presence of sophisticated individuals, levels out the disadvantage caused by

drawing smaller samples. In particular, when both populations comprise of higher cognitive

types (i.e., Lk individuals with k ≥ 2), any disadvantage borne out of unequal sample size is

“corrected” for and both populations end up with equal bargaining power.

4 General class of bimatrix games

In this section, we examine adaptive play between populations containing individuals of higher

cognitive level in bimatrix games. We use the stochastically stable set of Young’s adaptive

play model (i.e., with L1 individuals only) as a point of reference and denote this set by Ω̄a,b

for population A and B with sample sizes a and b respectively.

The next proposition deals with the case where only one of the populations (A) com-

prises of higher cognitive types. The situation where one population contains a share of L2
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individuals and both populations have an equal sample size has been captured in Matros

(2003).

Proposition 3. Suppose that the highest level of cognition in population A is Lk with k ≥ 2,

while population B only contains L1 individuals. The stochastically stable set is described by

Ω̄a,b if a ≥ b and by Ω̄a,a otherwise.

Proof. From Proposition 1, we know that curb sets are invariant to cognitive hierarchies

and that the unperturbed adaptive play process converges to a curb set.

Let ℓ be the minimum number of experimentations or mistakes required to transit from one

recurrent class to another when there are only L1 individuals in either population. Moreover,

let ℓ′ be the minimum number of experimentations or mistakes required to transit from one

recurrent class to another when there are only L1 individuals in population B while population

A contains more sophisticated individuals (i.e., k̂A ≥ 2).

The set of stochastically stable states might change if the minimum number of experi-

mentations needed to transit from one recurrent class to another changes. Notice that if it is

possible to get from one recurrent class to another in ℓ experimentations when k̂A = 1 and

k̂B = 1, then it is certainly possible as well with ℓ experimentations when k̂A ≥ 2 and k̂B = 1,

since with positive probability only L1 individuals are chosen in population A. Therefore

ℓ′ ≤ ℓ. The converse holds as well, i.e. ℓ ≤ ℓ′. To see this, note that Lk individuals, with

k ≥ 2 odd, would play a strategy outside the prevailing minimal curb set only if there are

enough number of mistakes in the rival population’s past play. Thus, the minimum number of

mistakes required to induce a best response outside the prevailing minimal curb set does not

change. As a result, there are no transitions that take place in the presence of Lk individuals,

with k ≥ 2 odd, that would not take place with L1 individuals. Lk individuals, with k ≥ 2

even, sample from their own population’s past play and it would take a certain number of

mistakes in their own population’s past strategies for these individuals to play a best response

not contained in the prevailing minimal curb set.

When sample sizes are equal (i.e., a = b), the same number of mistakes are sufficient to

induce L1 individuals in population B to play a different strategy. Hence, the same transition

can be established in a process with only L1 individuals. When population A has a larger

sample size (i.e., a > b), L1 individuals in population B would in fact, owing to the smaller

sample size, respond to a lesser number of mistakes in population A. The minimum number

of experimentations for the transition involve L1 individuals only. Thus, the possibility of

a similar transition also exists with only L1 individuals in either population. So, the set of

stochastically stable states is Ω̄a,b if a ≥ b.

Now, suppose population A has a smaller sample size (i.e., a < b). Then, Lk individuals

in population A, with k ≥ 2 even, react to the mistakes that appear in their own population

earlier than the individuals in population B. The L1 individuals in population B would
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have reacted to the same mistakes if they had a sample size equal to a. As a result, the

same transition would be effected with only L1 individuals in both populations, where both

populations are endowed with sample size a. Hence, the set of stochastically stable states is

Ω̄a,a if a < b. �

Proposition 3 implies that the presence of individuals with higher cognition only influences the

long run outcome when the population that they belong to is endowed with a smaller sample

size. In such a case, the effect of these individuals with higher cognition is to “decrease” the

sample size of the rival population to that of the own population. When both populations

comprise of higher cognitive types, the net effect is to “equalize” the sample size of both

populations. This is precisely what the next proposition states.

Proposition 4. Suppose both populations have individuals with a level of cognition of at least

2. The stochastically stable set is Ω̄a,a = Ω̄b,b.

Thus the above two propositions generalize the result obtained for the evolutionary Nash

bargaining model.

5 Extensions

In this section we present two extensions of the model considered. The first considers an

alternative specification of level-k reasoning, where we assume an individual of level k to

believe the opponent may be of any lower level with positive probability. In the second

we assume that individuals of higher cognition (falsely) use their own utility function when

forming a believe on the rival population’s play.

5.1 Alternative specification of level-k reasoning

In this first extension, we replace the assumption that Lk individuals believe that the opponent

is of level k − 1 and that each population comprises a positive mass of any lower type than

the maximum. Instead, we assume now that an Lk individual believes that the opponent is

of at most level k − 1, with positive mass on all cognitive levels up to k − 1.9 Let us denote

this individual by L∗k.

The L∗k individual recognizes the fact that the rival could be of any level between and

including 1 and k − 1 with positive probability and considers all best responses to any of

these possible opponents. This alternative specification of level-k reasoning does not affect the

results stated in Propositions 3 and 4 of the preceding section. To see this, it suffices to realize

that since an L∗k individual places a positive weight on all lower cognitive types, she behaves

like an Lk (when a best response corresponding to the belief that the opponent is an L(k−1)

individual is chosen) or an L(k − 1) individual (when a best response corresponding to the

9Note that we do not explicitly require all these types actually to be contained in the rival population.
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belief that the opponent is an L(k − 2) individual is chosen), each with positive probability.

Hence, the minimum number of experimentations to transit from one minimal curb set to

another does not change in comparison to the model with Lk individuals.

Recall that we do not require L∗k individuals to assign precise probabilities on the likeli-

hood to meet a rival of particular (lower) level of cognition, as is done in Stahl’s (1993) model

of sophistication and in Camerer et al.’s (2004) model of cognitive hierarchies. The latter

assumes individuals to perfectly know the fraction of lower cognitive types in the population,

such that the beliefs of individuals with higher level of cognition are closer to the actual pro-

portions in the population. It is straightforward to see that these restrictions on the beliefs,

do not affect the recurrent classes (which are the minimal curb sets) and the stochastically

stable set as long as the perceived probability to meet a type of any lower cognitive level is

strictly positive. For Camerer et al.’s (2004) model of cognitive hierarchies it would require

all lower cognitive types to be actually present in the rival population, thereby only allowing

for the cases for which |k̂A − k̂B| ≤ 1.

5.2 Knowledge of utilities

One source of dissatisfaction with the model in the previous sections might be that individuals

with level of cognition higher than or equal to 2 know the utility function of the individuals

in the other population. In this subsection, we relax this assumption for the class of games

G′, where the strategy sets and the ordinal preferences are identical for all individuals in

either population.10 We assume that individuals only know their own (population’s) utility

function and not that of their possible rivals. This implies that though the ordinal preferences

are the same across the two populations, individuals in one population are not aware of the

cardinal utilities of the individuals in the other population. We denote the resulting individual

with level-k depth of reasoning by L′k. Note, though, that we retain the assumption that if a

population contains an L′k individual (k ≥ 2), then it also contains an L′(k−1) individual. Let

k̂′A and k̂′B denote the highest cognitive level in population A and population B respectively.

Like Lk individuals, L′k individuals draw samples from the strategies of the rival popu-

lation when k is odd and of the own population when k is even. So, L′1 individuals behave

identically to L1 individuals: they best respond to the empirical distribution of strategies in

the sample drawn from the opponent population’s past play. L′2 individuals best respond

to their estimate of their rival’s behavior. Assuming that their rival is an L′1 individual,

they sample from their own population’s past play to assess the strategies the rival may be

using. However, for this assessment they use their own utility function rather than that of

the rival.11

10Examples outside this class for which the propositions below do not hold are easily constructed.
11Possible explanations of such a systematic behavioral trait include the ‘false consensus effect’ (Ross et al.,

1977) and self-projection (Buckner and Carroll, 2007).
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The following proposition claims that the resulting unperturbed adaptive play process is

invariant to this modification of the level-k model.

Proposition 5. In the class of games G′, if the history m is sufficiently large and the sampling

is sufficiently incomplete (i.e., a and b are sufficiently small), then the process of adaptive

play converges to a minimal curb set with probability one.

Proof. The proof is a trivial modification of the proof of Proposition 2. �

For further selection among the recurrent classes (i.e., the minimal curb sets) of the unper-

turbed process, we again adopt the notion of stochastic stability by studying the support

set of the limit of the stationary distribution of regular perturbations of the process when

the perturbation vanishes. Despite the invariance of the recurrent classes with respect to the

current alternative specification of level-k behavior, the stochastically stable set may change.

The next proposition illustrates how the stochastically stable state of the evolutionary Nash

bargaining game is changed.

Proposition 6. (i) Suppose that population A contains a fraction of L′k individuals for

k ≥ 2, while population B is comprised by L′1 individuals only. The stochastically stable state

is either the generalized Nash bargaining solution with the bargaining power of a population

equal to its own sample proportion, or the 50–50 division (equal split).

(ii) Suppose that both populations comprise of a fraction of L′2 individuals. The stochas-

tically stable state is either the generalized Nash bargaining solution with the bargaining power

of a population equal to its own sample proportion, a modified generalized Nash bargaining

solution with the bargaining power of a population equal to the other population’s sample

proportion, or the 50–50 division.

Proof. By Proposition 5, play settles in a minimal curb set, which corresponds to an

efficient convention. For stochastic stability we need to examine the relative ease or difficulty

of transiting from an efficient convention.

Part (i). An efficient convention (x, 1− x) can be disrupted by mistakes by population A

or by mistakes by population B.

First, consider mistakes by population A. One possibility is that these mistakes affect the

sample of L′1 individuals in population B. For these individuals to change their demand the

minimum number of mistakes required equals rδBA(x) = b min{v(1−x)−v(1−x−δ)
v(1−x) ,

v(1−x)
v(1−δ)}. The

other possibility is that these mistakes are sampled by L′k individuals in population A with k

even. For these individuals to change their demand the minimum number of mistakes required

equals rδAA(x) = a min{u(1−x)−u(1−x−δ)
u(1−x) ,

u(1−x)
u(1−δ)}. After all, these individuals would demand

something apart from x if they believe that an L′(k − 1) individual in population B is going

to demand something else than 1−x. The latter possibility occurs if the L′(k− 1) individual

in population B believes that an L′(k − 2) individual in population A is going to demand
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something different than x, and so on. Ultimately, this can be traced to the belief that an L′1

individual in population B changes the demand. If this does not happen, then none of the

higher cognitive individuals in any population believe that the action of the rival is going to

change. Individuals in population A form this belief when they sample a sufficient number of

mistakes in their own population. Since we are looking at the minimum number of mistakes

to move out of a convention, it suffices to examine the case when the mistakes in their own

population are such that the mistaken demands are just more than x (i.e., x + δ) or when

they ask for the least amount (i.e., δ). Suppose that ℓ mistakes of the first type have been

made. For an individual A to consider it viable that population B may change (to 1−x−δ), ℓ

should be such that u(1−x− δ) ≥ am−ℓ
am

u(1−x). This gives the least proportion of mistakes

necessary to be ℓ
m

= a
u(1−x)−u(1−x−δ)

u(1−x) . The second term can be derived by considering the

second type of mistakes.

Next, consider mistakes by population B. These mistakes can only affect the sample of

L′k individuals in population A with k odd. For these individuals to change their demand

the minimum number of mistakes is required to be rδAB(x) = a min{u(x)−u(x−δ)
u(x) ,

u(x)
u(1−δ)}.

The minimum resistance of the efficient convention (x, 1 − x) is thus given by rδ(x) =

min{rδBA(x), r
δ
AA(x), r

δ
AB(x)}. It is easily seen (by using the same argument as in the proof

of Proposition 2) that limδ↓0
rδ(x)
δ

= min{a u′(x)
u(x) , a

u′(1−x)
u(1−x) , b

v′(1−x)
v(1−x) } . The first of these terms

is decreasing in x while the latter two are increasing in x. The stochastically stable efficient

allocation (x̄, 1− x̄) is at the (unique) x̄ that maximizes rδ(x)
δ

, which is at the unique solution

to a
u′(x)
u(x) = min{a u′(1−x)

u(1−x) , b
v′(1−x)
v(1−x) }. Depending on which of the two terms in the right hand-

side is lowest at x̄, we either find the 50–50 division, or the generalized Nash bargaining

solution with the power of the population equal to its own sample size.

Part (ii). An efficient convention (x, 1 − x) can be disrupted by mistakes by population

A or by mistakes by population B.

First, consider mistakes by population A. One possibility is that these mistakes affect the

sample of L′k individuals in population B with k odd. For these individuals to change their de-

mand the minimum number of mistakes required equals rδBA(x) = b min{v(1−x)−v(1−x−δ)
v(1−x) ,

v(1−x)
v(1−δ)}.

The other possibility is that these mistakes are sampled by L′k individuals in population A

with k even. For these individuals to change their demand the minimum number of mistakes

required equals rδAA(x) = a min{u(1−x)−u(1−x−δ)
u(1−x) ,

u(1−x)
u(1−δ)}.

Next, consider mistakes by population B. One possibility is that these mistakes affect the

sample of L′k individuals in population A with k odd. For these individuals to change their de-

mand the minimum number of mistakes required equals rδAB(x) = a min{u(x)−u(x−δ)
u(x) ,

u(x)
u(1−δ)}.

The other possibility is that these mistakes are sampled by L′k individuals in population B

with k even. For these individuals to change their demand the minimum number of mistakes

required equals rδBB(x) = b min{v(x)−v(x−δ)
v(x) ,

v(x)
v(1−δ)}.

The minimum resistance of the efficient convention (x, 1 − x) is thus given by rδ(x) =
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min{rδBA(x), r
δ
AA(x), r

δ
AB(x), r

δ
BB(x)}. It is easily seen (by using the same argument as in the

proof of Proposition 2) that limδ↓0
rδ(x)
δ

= min{a u′(x)
u(x) , a

u′(1−x)
u(1−x) , b

v′(x)
v(x) , b

v′(1−x)
v(1−x) } . The first

and third of these terms are decreasing in x while the other two are increasing in x. The

stochastically stable efficient allocation (x̄, 1 − x̄) is at the (unique) x̄ that maximizes rδ(x)
δ

,

which is at the unique solution to min{a u′(x)
u(x) , b

v′(x)
v(x) } = min{a u′(1−x)

u(1−x) , b
v′(1−x)
v(1−x) }. Depending

on which of the two terms in the two sides of the equation are lowest at x̄, we either find the

50–50 division, the generalized Nash bargaining solution with the power of the population

equal to its own sample size, or the generalized Nash bargaining solution with the power of

the population equal to the other population’s sample size. �

Proposition 6 shows that this alternative specification of level-k behavior has a severe quali-

tative impact on the long run outcome. The L′k specification allows for the equal split and an

inverted version of the generalized Nash bargaining solution to be feasible long run outcomes.

This latter is not a long run outcome in the Lk specification, while the former was found only

when the cardinal utilities of the populations were identical up to an affine transformation.

6 Concluding remarks

In this paper we investigated the effect of sophisticated agents on adaptive play. Apart

from the more usual way of defining sophisticated agents as higher order best responders

(Lk individuals), we introduced an alternative notion that does not assume (higher order

best responding) individuals to be aware of the utility function of the individuals in the

rival population (L′k individuals). We find that the unperturbed adaptive play process, with

either notion of sophistication, converges to a minimal curb set. The intuition for this result is

simple. With only L1 = L′1 individuals, best response adaptive play converges to a minimal

curb set in a finite number of steps. So, since with positive probability only simple best

responders are chosen for any finite number of steps, the process converges to a minimal curb

set. By the construction and definition of a minimal curb set, higher order best responses are

contained in it. Hence, any strategy chosen by a more sophisticated best responder would be

in the minimal curb set.

In addition to the focus on the recurrent classes, we also considered the effect of these more

sophisticated best responders on the stochastically stable outcomes relative to Young’s setting

with only simple best responders. We find that higher level of sophistication has no effect when

the population containing these has the same or higher sample size. However, sophistication

has a differential effect when the population holding these individuals has a strictly smaller

sample size. The effect is as if to reduce the sample size of the rival population to that of the

own population. This effect is already obtained by the presence of a fraction of L2 individuals

and the addition of even higher cognitive types have no further effect. Again, the intuition is

simple. Higher sophistication has an influence only when it results in a formation of a belief
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that the rival is going to change her behavior, and the sophisticated best responders actually

changing their own behavior on basis of that belief. An individual needs to be at least of level

2 to form such a belief. Only when the sophisticated best responders have a smaller sample

size the belief is “unfounded”, which is why that is the only situation in which they have

a differential effect on the stochastically stable outcomes. When both populations have L2

individuals, then it is as if we are dealing with the basic adaptive play model of Young with

both populations having equal sample size. The presence of L2 individuals on both sides,

level out any differences in sample size. And, again, more sophistication beyond L2 types

has no additional effect – as mentioned earlier, all higher beliefs formed can be traced to

the behaviour of an L1 type individual. With L1 and L2 individuals, the mistakes in either

populations’ play that may give rise to different beliefs are accounted for. Hence, even higher

cognition has no effect.

We hazard a guess and suspect that these properties are transferable to a setting with

multiple populations. First, convergence to a minimal curb set is clearly obtained for any

number of populations and any distribution of cognitive types across populations. Moreover,

regarding stability against experimentation, still all plays of strategies outside a prevailing

curb set can be traced to either a level-1 individual in some population to change play with

positive probability (based on a sufficient number of mistakes), or there should be a belief by

some higher order type that this is about to happen.

Throughout the paper, we have restricted attention to the best reply dynamic and have

ignored the weakly better reply dynamic that is less demanding with respect to the individuals’

rationality. One attractive feature of considering weakly better replies is that under a wide

class of evolutionary dynamics, a set is asymptotically stable if and only if it is closed under the

better reply correspondence (Ritzberger and Weibull, 1995, Thm. 1). With level-1 individuals,

play converges to a set that is closed and fixed under the better reply correspondence. If we

incorporate the element of higher cognition, then for the very same reasons as in Proposition 1,

this result is unaffected. However, it is of course possible that the set of stochastically stable

states varies.

Having identified the effect that higher cognition has on adaptive play, the next question

is their qualitative impact: Do more sophisticated individuals leave their population better

off? Thereto, suppose that population A consist of L1 and L2 individuals, while population B

has L1 individuals only. Suppose further that the sample size of population B is greater than

that of population A (a < b), so that by Proposition 4, the stochastically stable states are the

same as in a process where both populations have simple best responders only and the sample

sizes are equal. We argue that depending on the payoffs of the game, this outcome may be

better or worse for population A – the population with the clever agents. That population

A may benefit from the presence of clever agents was seen in the Nash bargaining model.

However, this is not a universal phenomenon. To this end, we draw attention to an example

19



from Young (1998, Ch. 5) that illustrates that having less information (i.e., a smaller sample

size and therefore higher sensitivity to mistakes) may be an advantage. Consider the game

in Figure 1 and assume that the row population has a sample size of s while the column

population has a sample size of s′, with 9
19 s <

7
17 s

′. When both populations have simple best

L R

U 10, 7 0, 0
D 0, 0 9, 10

Figure 1: Example

responders only, then the outcome with payoffs (10, 7) is stochastically stable – i.e., the row

population is better off. However, if the row population contains a fraction of sophisticated

best responders (i.e., L2 individuals), then the outcome with payoffs (9, 10) is stochastically

stable. Hence, the row population suffers from the presence of higher cognitive individuals in

their population.

An interesting qualitative impact of sophistication comes from Matros (2003): Sophistica-

tion might influence the distribution of strategies inside the stochastically stable minimal curb

set(s). This is illustrated by Matros (2003) in the game of Matching Pennies, where one of the

populations had a fraction of L2 individuals. In the long run outcome, these L2 individuals

have a positive expected payoff while the L1 individuals in both populations have a negative

expected payoff. We suspect that even though sophistication beyond L2 has no effect on

the stochastically stable minimal curb set(s), similar features may be observed. There may

also be differences in the speed of convergence. The finding of Matros (2003) raises another

interesting issue: Will more sophisticated types end up with a payoff at least as large as that

of less sophisticated types? We suspect that this will not generally be the case in a model

where there are at least L2 types on both populations as the expected payoffs will depend

heavily on the precise proportion of each type in each population.
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