
 

Breakdown of Magnetic Order in the Pressurized Kitaev Iridate β-Li2IrO3
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Temperature-pressure phase diagram of the Kitaev hyperhoneycomb iridate β-Li2IrO3 is explored using

magnetization, thermal expansion, magnetostriction, and muon spin rotation measurements, as well as

single-crystal x-ray diffraction under pressure and ab initio calculations. The Néel temperature of β-Li2IrO3

increases with the slope of 0.9 K=GPa upon initial compression, but the reduction in the polarization field

Hc reflects a growing instability of the incommensurate order. At 1.4 GPa, the ordered state breaks down

upon a first-order transition, giving way to a new ground state marked by the coexistence of dynamically

correlated and frozen spins. This partial freezing in the absence of any conspicuous structural defects may

indicate the classical nature of the resulting pressure-induced spin liquid, an observation paralleled to the

increase in the nearest-neighbor off-diagonal exchange Γ under pressure.
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Introduction.—Quantum spin liquid is an exotic state of
matter that entails highly correlated spins but evades

magnetic ordering down to zero temperature [1]. The

Kitaev model plays a special role in this context, because

it offers an analytical solution for a quantum spin liquid and

hosts fractionalized excitations having potential relevance

to topological quantum computing [2–5]. The Kitaev spin

liquid on the honeycomb lattice can be gapless or gapped,

depending on the interaction regime. It shows peculiarities

in the dynamical structure factor [6] and Raman response

[7]. Many of these features are shared by the three-

dimensional (3D) version of the Kitaev model on the

hyperhoneycomb and stripyhoneycomb lattices [8–10].

One additional peculiarity in this case is that the spin-

liquid phase survives to finite temperatures and undergoes a

phase transition to a classical paramagnet [11,12]. This

distinguishes the Kitaev spin liquid in 3D from any other

instance of quantum spin liquid, because only the former

shows a thermodynamic singularity [13].
On the experimental side, Kitaev physics in 3D can be

relevant to β- and γ-polymorphs of Li2IrO3 [4]. Both

compounds are magnetically ordered at low temperatures

[14–17]. Their noncoplanar incommensurate spin arrange-

ments are driven by the Kitaev interactions [18] in

combination with other exchange terms producing the

nearest-neighbor spin Hamiltonian [19–21]

H ¼
X

hiji;α;β≠γ

½JijSiSj þ KijS
γ
iS

γ
j � ΓijðS

α
i S

β
j þ S

β
i S

α
j Þ�:

Here, Jij is the Heisenberg exchange term, Kij is the Kitaev

exchange, and Γij stands for the off-diagonal exchange

anisotropy. These exchange parameters take different

values for the X-, Y- and Z-type Ir-Ir bonds of the

hyperhoneycomb lattice, respectively.
Long-range magnetic order in β- and γ-Li2IrO3 restricts

access to the physics of the Kitaev model in 3D. Ab initio

studies suggest that at least in β-Li2IrO3 magnetic inter-

actions may change significantly under pressure [22],

which should shift the system toward the exotic spin-liquid

state. Experimental information remains limited to date,

indicating only a reconstruction of the electronic state of

Ir4þ below 2 GPa [23]. Here, we map out the temperature-

pressure phase diagram of β-Li2IrO3 and show that the

magnetic order disappears abruptly upon a first-order

transition around 1.4 GPa, whereas local moments persist

above this pressure and form a dynamic state, albeit

hindered by partial spin freezing. We identify this state
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as a putative classical spin liquid in line with recent
theory [24] suggesting the formation of such a correlated
regime in the limit of large Γ, a trend consistent with the
experimental evolution of the crystal structure and ensuing
exchange couplings, which we obtain on different levels of
ab initio theory.
Magnetization.—Magnetic susceptibility was measured

on polycrystalline samples of β-Li2IrO3. It sharply increases
below 50 K and changes slope at TN ¼ 38 K at ambient
pressure [Fig. 1(a)]. This unusual behavior reflects the
nontrivial incommensurate nature of the magnetic order
[14], which is very sensitive to the applied field. The bend
around Hc ≃ 2.7 T in the ambient-pressure magnetization
curve [Fig. 1(b)] marks the suppression of the incommen-
surate order by the field applied along the b direction. Above
2.7 T, commensurate spin correlations reminiscent of the
zigzag order become predominant [25]. The field couples to
a ferromagnetic canting mode [21,25], and the value of the
critical field Hc gauges the stability of the incommensurate
order [26].
The same features are seen in the magnetization data

under pressure measured upon compression. Below
1.1 GPa, TN increases with the slope of dTN=dp≃

0.9 K=GPa. The low-temperature susceptibility increases
as well, reflecting the fact that the slope ofMðHÞ increases,
and Hc shifts toward lower fields. Both features are
suppressed at higher pressures and are no longer visible
in the data collected at 1.7–1.9 GPa, where the signal
becomes very low, reaching the sensitivity limit of our
measurement setup. This suppression of the magnetization
is well in line with the disappearance of the x-ray magnetic
circular dichroism (XMCD) signal around 1.5 GPa [23],
because XMCD is proportional to the sample magnetiza-
tion induced by the applied field.
Thermal expansion and magnetostriction.—Evolution of

the magnetic order under pressure was cross-checked by

ambient-pressure thermal expansion measurements per-
formed on the pressed pellet of β-Li2IrO3. Figure 2(a)
shows a λ-like peak in the thermal expansion (α), indicating
a second-order phase transition with a non-negligible
magnetoelastic coupling. The initial slope of TN is obtained
from the Ehrenfest relation dTN=dp¼Vmol×TN×Δβ=ΔC.

In our case, Vmol ¼ 3.354 × 10−5 m3=mol and volume
expansion coefficient β ¼ 3α, with Δα ¼ −ð0.5� 0.05Þ×
10−6 K−1, yields an initial pressure dependence of the
transition temperature ðdTN=dpÞp→0¼ð0.7�0.02ÞK=GPa

in agreement with the magnetization data. This confirms
the positive sign of dTN=dp.
Figure 2(b) shows the magnetostriction coefficient λ ¼

d½ΔLðTÞ=L0�=dB [27,28] at 4 K as a function of the
magnetic field. The hump around 2.7 T develops below TN,
indicating magnetoelastic coupling in the ordered state. The
negative sign of λ implies that the magnetization should
increase upon compression, following the Maxwell relation
λV ¼ −ðdM=dpÞT;B, where V is the volume and M is the

magnetization. This further supports the increase in M and
the reduction in Hc under pressure.
The field Hc marks an instability of the incommensurate

state [25,26]. The reduction in Hc upon compression
implies that the ambient-pressure magnetic order becomes
destabilized and should eventually disappear, as we observe
indeed. However, neither the magnetization data nor
XMCD elucidate the nature of the high-pressure phase
formed above 1.4 GPa. The low magnetization and the
absent XMCD signal could imply (i) a robust antiferro-
magnetic order that is not polarized by the field of several
Tesla, as in α-Li2IrO3 and Na2IrO3, (ii) a dynamic spin
state, and (iii) magnetism collapse due to, e.g., dimerization
[29] or metallization. In the following, we use muon spin
relaxation (μSR) as a sensitive local probe that distin-
guishes between these different scenarios and gives strong
evidence for the formation of a dynamic spin state, albeit
hindered by partial spin freezing.
μSR results.—Muon spin relaxation experiments were

performed on polycrystalline samples. We discuss the
ambient-pressure data first. At temperatures below TN,
μSR spectra exhibit well-defined oscillations, which indi-
cate long-range magnetic order. Given the complex

(a)

(b)

FIG. 1. (a) Magnetic susceptibility (χ ¼ M=H) as a function
of temperature at different pressures in the presence of the 1 T
magnetic field. (b) Magnetization curves measured at different
pressures at 10 K.

(a) (b)

FIG. 2. (a) Specific heat and thermal expansion as function of
temperature. (b) Magnetostriction at 4 K.
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incommensurate order, a nontrivial function of the asym-
metry decay can be expected. However, after trying several
functions, we have found that a simple sum of three cosines
with the oscillation frequencies of 2.7, 3.3, and 4 MHz
reproduces the spectrum quite well [30],

AðtÞ ¼
2

3

X3

i¼1

Ai cosðωitþ ϕÞe−λT t þ
1

3
e−λLt; ð1Þ

where λT and λL represent, respectively, the transverse and
longitudinal relaxation rates, ω is the oscillation frequency,
and ϕ ≃ 0 is the phase. The temperature dependence of the

frequencies follows a phenomenological relation ωðTÞ ¼

ωð0Þ½1 − ðT=TNÞ
α0 �β

0
with α0 ≃ 4.6 and β0 ≃ 0.5 (see

Supplemental Material [32]). This β0 value indicates a
mean-field-type magnet, whereas the large α0 value sup-
ports a complex magnetic state [57].
Experiments performed with a weak transverse field

(WTF) of 50 G give access to the model-independent
evaluation of the transition temperature and magnetically
ordered volume fraction [58]. In the presence of the WTF,
static spins do not contribute to the oscillating signal, and
the asymmetry directly measures the fraction of dynamic
spins in the sample. Figure 3(a) indicates that at ambient
pressure this fraction sharply drops down to zero at
TN ≃ 38 K. At higher pressures, less than half of the spins
become static, whereas the remaining ones are dynamic
down to the lowest temperature probed in our experiment.
The crossover temperature, where part of the spins

becomes static, was estimated by fitting the temperature
dependence of the nonmagnetic volume fraction with a
sigmoidal function. We detect a slight increase in TN at the
pressure of 1.19 GPa, in agreement with the magnetization
and thermal expansion data. Upon further compression, the

crossover temperature decreases to about 15 K. It no longer
represents the magnetic ordering temperature, because
static spins form a glassy state. This is evidenced by the
zero-field data measured at 3.5 K [Fig. 3(b)]. The oscil-
lations due to the long-range-ordered state remain at the
same frequencies, but reduce in magnitude upon compres-
sion and vanish above 1.37 GPa.
We now turn our attention to the nature of the high-

pressure magnetic state. The signal at high pressures is
described by a sum of an oscillating function and a
Gaussian relaxing function. The total asymmetry includes
two contributions, one from the frozen part (Afr) [59] and
the other one (1 − Afr) that is described by a Gaussian

relaxation component e−ðσtÞ
2=2, where σ represents the

width of the local field distribution. The Afr has been
estimated from the WTF measurements. The width of the
local magnetic field is estimated to be about 10 G at 4 K. A
longitudinal magnetic field, which is 10 times higher than
that, should decouple the muon relaxation channel com-
pletely. However, even at a longitudinal magnetic field of
500 Oe a weak relaxation survives [Fig. 3(d)], which
implies that correlations of unfrozen spins are dynamic
in nature. The extracted temperature dependence [Fig. 3(c)]
shows an increase in σ below 30 K, indicating the onset of
short-range correlations between the dynamic spins, and
parallels the formation of frozen spins. Below 15 K, both σ
and the fraction of frozen spins remain constant, indicating
phase separation of β-Li2IrO3 into frozen spins (spin glass)
and dynamic spins (spin liquid).
Crystal structure and exchange couplings.—Single-

crystal x-ray diffraction (XRD) performed under pressures
up to 3.45 GPa does not reveal any drastic structural
changes and excludes structural dimerization [29], either
macroscopic or local, as the possible cause for the absence

FIG. 3. (a) Volume fraction of dynamic spins measured in the WTF experiment; the solid lines are sigmoidal fits. (b) Zero-field μSR
time spectra at 3.5 K. (c) Field distribution for the dynamic spins σ as a function of temperature at 2.27 GPa. (d) Muon asymmetry in
different longitudinal fields at the pressure of 2.14 GPa at 2 K.
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of magnetic order above 1.37 GPa. The orthorhombic
symmetry of β-Li2IrO3 is preserved, and the Ir displace-
ment parameters remain unchanged under pressure [32].
The Ir-Ir distances were extracted directly from the XRD
data, whereas oxygen positions were additionally refined
ab initio [32], resulting in a smooth pressure dependence.
Not only the Ir-Ir distances are shortened, but also Ir-O-Ir
angles are reduced by nearly 1° upon the compression to
2.4 GPa [Fig. 4(c)].
The effect of this structural evolution was examined by

electronic-structure calculations employing two complemen-
tary approaches: (i) second-order perturbation theory for an
effective model parametrized from density-functional (DFT)
calculations [60], and (ii) multireference quantum chemistry
calculations for finite embedded clusters [61]. Both methods
agree on the qualitative trends for nearest-neighbor exchange
couplings, namely, the absolute values of the off-diagonal
exchange interaction Γ increases, whereas the Kitaev

exchange K decreases [Fig. 4(d)]. The Heisenberg J, as
well as all couplings beyond nearest neighbors, remain
weaker than the nearest-neighbor Γ and K [32].
Discussion.—β-Li2IrO3 reveals dissimilar trends upon

compression. The increasing TN indicates growing energies
of exchange couplings, as the Ir-Ir distances shorten. In
contrast, the reduction in Hc points to a destabilization of
the ambient-pressure magnetic order. Recent theory work
[21] considers β-Li2IrO3 from the perspective of two
competing ordering modes. The ambient-pressure incom-
mensurate order is due to a Q ≠ 0 mode, which is
predominant in zero field. A magnetic field applied along
the b direction amplifies the Q ¼ 0 mode and reduces the
magnitude of the Q ≠ 0 mode, eventually destroying
incommensurate order above Hc. Our data evidence the
stabilization of the Q ¼ 0 mode and destabilization of the
Q ≠ 0 mode also under pressure, which is concomitant
with the reduction in K and the increase in Γ, as our
ab initio results show [Fig. 4(d)]. Around 1.4 GPa, the
Q ≠ 0 mode is no longer active, and the incommensurate
order disappears.
Two scenarios of this breakdown can be envisaged.

According to Ref. [21], the Γ=K > 1 region should be
characterized by another type of magnetic order, which
may appear in the narrow pressure range around 1.4 GPa
before the spin-liquid phase of the large-Γ limit [24] sets in.
However, our data are also consistent with a direct first-
order transformation between the incommensurate order
and spin liquid, similar to the pressure-induced breakdown
of magnetic order in itinerant magnets, where phase
separation is typically observed, with ordered and disor-
dered phases coexisting in a broad pressure range [62].
Indeed, at low temperatures, we observe a fraction of
disordered spins already at 1.19 GPa, as well as the
coexistence of ordered and disordered states at
1.36 GPa, thus confirming the first-order nature of the
transition [Fig. 3(a)]. The reduced magnetization at
1.37 GPa (Fig. 1) would be then due to the coexistence
of the ordered phase and spin liquid.
Interestingly, the ground state of β-Li2IrO3 well above

1.4 GPa is also phase separated, but this time it represents a
mixture of two disordered states: spin liquid and spin glass.
Similar features have been seen in powder samples of the
kagome mineral vesigneite [63], although single crystals of
the same mineral show clear signatures of a magnetic
transition [64], thus hinting at the structural disorder as the
origin of both the dynamic spin state and partial freezing
therein.
β-Li2IrO3 is clearly different, because it does show

robust magnetic order at ambient pressure and, according
to XRD data [32], lacks any visible structural defects,
either native or pressure induced. Therefore, we are led to
conclude that dynamic spins in pressurized β-Li2IrO3

represent a spin-liquid state, but this liquid is highly fragile.
A strong tendency toward freezing is more likely to occur

(a)

(b)

(c)

(d)

FIG. 4. Phase diagram of β-Li2IrO3 as a function of pressure
according to (a) susceptibility measurements and (b) μSR data.
The circles, squares, and stars correspond, respectively, to the
oscillation frequency, TN , and to the temperature below which the

phase-separated state occurs. (c) Changes in the nearest-neighbor
Ir-Ir distances and Ir-O-Ir angles under pressure for the X, Y- and
Z-type bonds [32]. (d) Relative changes in the Kitaev exchange K
and off-diagonal anisotropy Γ with respect to their ambient-
pressure values K0 and Γ0, respectively. The K and Γ values
are averaged over the X, Y and Z bonds. The open and field
symbols are from quantum-chemical (QC) and DFT calculations,
respectively.
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in a classical spin liquid, which is indeed anticipated in the
large-Γ limit that our system approaches. With Γ < 0,
exchange terms beyond Γ should cause order by disorder,
but its energy scale is as low as Γ=64 ≤ 3 K, going beyond
the lower limit of our data.
Conclusions.—Incommensurate magnetic order in

β-Li2IrO3 is destabilized under pressure and vanishes upon
the first-order transition around 1.4 GPa, giving way to the
coexisting dynamic and static spins in a partially frozen
spin liquid. A plausible explanation of this effect is the
formation of a classical spin liquid prone to spin freezing.
Such a state is indeed expected in the large-Γ limit that
β-Li2IrO3 tends to approach. Our results do not support the
pressure-induced formation of a quantum spin liquid, and
instead put pressurized β-Li2IrO3 forward as a suitable
platform for studying classical spin liquid in the large-Γ
limit of the extended Kitaev model, an interesting and
hitherto unexplored field. The natural next step in this
endeavor would be nuclear magnetic resonance and elec-
tron spin resonance measurements probing spin dynamics
in pressurized β-Li2IrO3 on different timescales.
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