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Abstract

We discuss effects of the brane-localized mass terms on the fixed points of the toroidal
orbifold T 2/Z2 under the presence of background magnetic fluxes, where multiple lowest
and higher-level Kaluza–Klein (KK) modes are realized before introducing the localized
masses in general. Through the knowledge of linear algebra, we find that, in each KK level,
one of or more than one of the degenerate KK modes are almost inevitably perturbed,
when single or multiple brane-localized mass terms are introduced. When the typical scale
of the compactification is far above the electroweak scale or the TeV scale, we apply this
mechanism for uplifting unwanted massless or light modes which are prone to appear in
models on magnetized orbifolds.
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1 Introduction

The standard model (SM) of particle physics has been verified by the discovery of the final
puzzle piece—i.e., the Higgs boson—in 2012 [1, 2]. It is well known that the SM can explain
almost all of the phenomena around the electroweak scale (∼ 100 GeV) with great accuracy.
However, extensions beyond the SM are required, due to several theoretical difficulties which
appear inevitably in the SM, e.g., the flavor puzzle, the lack of a dark matter candidate, the
gauge hierarchy problem, and so forth.

Among such extensions beyond the SM, extra dimensions have been studied from a phe-
nomenological point of view. Indeed, the geometry of the compactified hidden directions
determines phenomenological properties in the four-dimensional (4D) low-energy effective
theory (LEET). For example, it is known that some extra-dimensional properties such as
Kaluza-Klein (KK) wave functions reflect information on the extra-dimensional topologies.
In particular, localization of the lowest wave function(s) among the KK-decomposed modes
significantly affects the LEET obtained after dimensional reduction. Indeed, many phe-
nomenological models accompanying localization of the KK-expanded modes have been pro-
posed and investigated. For example, overlap integrations of KK wave functions are used to
realize a huge hierarchy in Yukawa coupling constants [3], where differences in the degrees of
overlapping lead to the hierarchy in the eigenvalues of the Yukawa matrix. Similarly, such an
overlapping of KK wave functions can provide the Froggatt-Nielsen mass matrix textures [4],
their Gaussian-extended version [5], and so on. For such a reason, model builders interested
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in extra dimensions are intrigued by the localization of particle profiles in extra directions as
a way to realize a huge hierarchy in a natural way.

On the other hand, when we address orbifold compactifications, an interesting feature
is found, which is useful for concrete model constructions: the existence of orbifold fixed
point(s). Model builders have added desirable terms on the orbifold fixed points to derive
necessary structures and/or to conquer problems that are more difficult in the bulk part of
extra dimensions. For example, the authors of Ref. [6] pointed out that the Yukawa couplings
can be introduced on the S1/Z2 orbifold fixed points, although Yukawa interactions are
prohibited on the bulk of S1/Z2. There are other uses of fixed points. In some papers,
model builders have introduced brane-localized mass term(s) on the fixed points in order
to uplift dangerous massless (or very light) particles for consistent model constructions. In
Refs. [7, 8], brane-localized mass terms on the fixed points of the toroidal orbifold T 2/Z2 were
investigated and it was declared that a massless zero mode can become massive via effects
of the brane-localized mass.

Recently, several groups have eagerly studied systems on magnetized backgrounds based
on toroidal extra dimensions and their orbifolded versions [9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20].1) This is because magnetic fluxes play important roles in constructing phenomeno-
logical models [23]. Indeed, the presence of magnetic fluxes leads to the multiplicity of the
lowest KK modes, where such an emergence of the multiple lowest modes is considered as a
spontaneous generation of a family replication in LEET. Also, specific configurations of the
magnetic fluxes penetrating extra dimensions break supersymmetry, (see e.g., Ref. [5]).

In this paper, we examine the situation where the two phenomenology fascinating ideas-
namely, a magnetized background and a mass term localized on an orbifold fixed point—are
taken into account simultaneously. Our major motivation for focusing on this configuration is
as follows. A possible problem in realizing family structures when using the magnetic fluxes
is that extra massless modes emerge in some concrete models. Introducing brane-localized
mass terms may help such situations by making some of the light particles decoupled, which
can be expected. Also, after the perturbation by the insertion of mass terms on fixed points,
particle profiles are changed through the rediagonalization of a perturbed KK mass matrix,
where some part of the mass spectrum may be unchanged.

This paper is organized as follows. In Sec. 2, we briefly review the KK decompositions
for the six-dimensional (6D) scalar and spinor fields on a magnetized two-dimensional torus,
and show that the KK-expanding wave functions are described by the Jacobi theta function
and the Hermite polynomials on the basic magnetic background. Then, we focus on the
Z2-orbifolded situation of a two-dimensional torus with magnetic fluxes, where important
properties of the Z2 eigenmodes are shown. In Sec. 3, we investigate effects on the KK mass
spectra after taking care of effects from brane-localized mass(es), where the forms of eigen-
values and eigenvectors after the perturbation are investigated theoretically. Subsequently,
in Sec. 4 we directly explore deformations of the profile of KK particles (in the correct mass
eigenbases under the brane-localized mass terms) through numerical calculations. In Sec. 5,
we comment on the cutoff dependence of the KK mass eigenvalues. Section 6 is devoted to a
conclusion and discussion. In AppendixA, we summarize our notation for 6D gamma matri-
ces. In AppendixB, we provide a discussion on the situation with multiple brane-localized

1)See also Refs. [21, 22].
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mass terms.

2 Brief review of bulk wave functions

In this section, we briefly review the wave functions of KK modes on a magnetized back-
ground, based on Refs. [23, 24, 25, 15].

2.1 Flux background

We consider the two actions of the 6D gauge theory on the 4D Minkowski spacetime times
two-dimensional torus T 2 with a 6D Weyl spinor (Ψ) or a 6D complex scalar (Φ), e.g.,

SWeyl =

∫

d4x

∫

T 2

d2z {iΨ̄ΓMDMΨ}, (1)

Sscalar =

∫

d4x

∫

T 2

d2z
{
−|DMΦ|2

}
, (2)

where the indexM runs over µ (= 0, 1, 2, 3), 5, 6 and ΓM denotes the 6D gamma matrices (see
Appendix A for details of our notation). DM ≡ ∂M − iqAM denotes a covariant derivative.
Here, q denotes a U(1) charge. In the above action, we define a (dimensionless) complex
coordinate z ≡ (y5 + τy6)/2πR with two Cartesian coordinates y5 and y6 and τ ∈ C to
express two extra space directions. Also, R denotes a compactification radius of T 2 and is
associated with a compactification scale MC , i.e., MC ∼ 1/R. In the complex coordinate,
the toroidal periodic condition is expressed as z ∼ z + 1 ∼ z + τ .

In the six-dimensional action, we assume that the vector potential AM possesses a (clas-
sical) nontrivial flux background b =

∫

T 2 F with field strength F = (ib/2Im τ)dz ∧ dz̄:

A(b)(z) =
b

2Im τ
Im z̄dz. (3)

The consistency condition under contractible loops, e.g., z → z+1 → z+1+ τ → z+ τ → z,
provides the Dirac charge quantization,

qb

2π
=M ∈ Z. (4)

Indeed, the magnetic flux plays an important role in the context of higher-dimensional gauge
theory. For example, it was found in Ref. [23] that the flux background can provide the
multiplicity of KK-expanding wave functions and their localized profiles, as we will see below.

2.2 KK modes on T 2 with magnetic fluxes

Next, we briefly review KK-mode wave functions of 6D Weyl spinor and scalar fields, denoted
by Ψ and Φ, on a magnetized T 2, based on Refs. [23, 25]. First, we decompose them as

Ψ(xµ, z) =
∑

n

χn(x
µ)⊗ ψn(z), (5)

Φ(xµ, z) =
∑

n

ϕn(x
µ)⊗ φn(z), (6)
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where the integer n = 0, 1, 2, · · · discriminates values of KK levels. For later convenience,
we adopt the above notation where a two-dimensional(2D) spinor ψn carries a 2D chirality
distinguished by ± as ψn = (ψ+,n, ψ−,n)

T. The KK modes of the spinor in Eq. (5) are
designated as eigenstates of the covariant derivative D ≡ [∂z̄ + πMz/(2Im τ)] /(πR) with
∂z̄ = πR(∂y5 + τ̄∂y6) as

(
D†D 0
0 DD†

)(
ψ+,n

ψ−,n

)

= m2
n

(
ψ+,n

ψ−,n

)

, (7)

while those of the scalar in Eq. (6) are eigenstates of the Laplace operator ∆ ≡ {D†, D}/2 as

∆φn = m2
nφn. (8)

For simplicity, we choose a simple complex structure parameter, i.e., τ = i. Also, we
focus on the case of positive magnetic fluxes M > 0. Because it is straightforward to apply
the following discussions to nontrivial values of τ and negative fluxes, we will not address
such a case on this paper.

The form of the eigenstates of the KK modes is shown analytically by the Jacobi theta
function and the Hermite polynomials. First, we focus on (massless) zero-mode wave func-
tions for ψ+,n. The zero-mode wave functions are multiply degenerate and given as

ψj
+,0(z) = N eπiMzIm z ϑ

[

j/M

0

]

(Mz,Mi), (9)

where the Jacobi theta function is defined by

ϑ

[

a

b

]

(ν, τ) =
∑

ℓ∈Z

eπi(a+ℓ)2τ+2πi(a+ℓ)(ν+b), (10)

where a and b are real parameters, and ν and τ take complex values with Im τ > 0. In the
above expression, the number of degenerate zero modes is determined by the magnitude of
the magnetic fluxes, i.e., j = 0, 1, ...,M − 1 (with modulo M). The normalization constant is
calculated asN = (2M/A2)1/4, where the area of the torusA = (2πR)2, which is independent
of j on T 2. On the other hand, massive KK-mode wave functions are given as

ψj
+,n(z) =

N√
2nn!

eπiMzIm z
∑

ℓ∈Z

e−πM( j

M
+ℓ)2+2πiMz( j

M
+ℓ)Hn

(√
2πM

(
j
M

+ ℓ+ Im z
))
, (11)

with the Hermite polynomials

Hn(x) = (−1)nex
2 dn

dxn
e−x2

. (12)

We note that the form in Eq. (9) is a specific case (n = 0) of that in Eq. (11). As shown in
Refs. [23, 25], the squared KK mass eigenvalue is given as

m2
n =

4πM

A n, (13)
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for n = 0, 1, 2, · · · , which is independent of the index j.
Next, we address the case of ψ−,n. Indeed, since nonvanishing magnetic fluxes cause a

chirality projection for massless zero modes of ψn, the zero modes ψ−,0 are not normalizable
for M > 0. For n ≥ 1, wave functions of the KK modes are similarly written as ψj

−,n =

Dψj
+,n/mn. Note that the multiplicity of ψj

−,n is the same as that of ψj
+,n when n ≥ 1.

The case of the 6D scalar field is treated similarly to the case of the 6D spinor which we
discussed. The set of wave functions of the scalar field is exactly the same as that of the
spinor, i.e.,

φj
n(z) =

N√
2nn!

eπiMzIm z
∑

ℓ∈Z

e−πM( j

M
+ℓ)2+2πiMz( j

M
+ℓ)Hn

(√
2πM

(
j
M

+ ℓ+ Im z
))
, (14)

where n ≥ 0 and j = 0, 1, · · · ,M − 1 (with modulo M). An important difference between
the scalar and spinor fields is found in their mass eigenvalues. The KK mass spectrum of the
scalar is given as

m2
n =

2πM

A (2n+ 1), (15)

which implies that the lowest KK modes of the scalar are massive. 2)

2.3 KK modes on T 2/Z2 with magnetic fluxes

Now, we are ready to address the wave functions on T 2/Z2 with fluxes. In addition to toroidal
conditions on the fields, we introduce an additional identification in the 2D space. In general,
for N = 2, 3, 4, and 6, the T 2/ZN orbifold is defined by identifications under the twist,

z ∼ e2πi/Nz. (16)

It was concretely pointed out in Refs. [24, 15] that the magnetic fluxes can coexist with the
twist identification, and also that some parts of the KK-expanded modes are projected out.
Accordingly, the multiplicity of the KK modes is changed and hence magnetized toroidal
orbifolds can be an interesting framework for phenomenological model building.3)

In this paper, we restrict ourselves to the Z2 twisted orbifold as an illustration. Also,
we assume that (discretized) Wilson line and Scherk-Schwarz twisting phases are all vanish-
ing. Since an extension to the cases with such nonvanishing twisting phases can be done
straightforwardly by means of the operator formalism [16], we do not address such general-
ized situations. Under the above twist identification, we construct the Z2 eigenstates of the
KK modes which should obey the boundary conditions around z = 0:

ψT 2/Z2 ±,n(−z) = ±ηψT 2/Z2 ±,n(z), (17)

2)If one tries to embed the toroidal compactification with fluxes into the superstring/supergravity theories,
it is plausible that the above charged (fundamental) scalar field may consist of some higher-dimensional gauge
fields as a possibility for the UV completion. Although a derivation of the scalar is often difficult, in this
paper we analyze the scalar spectrum from the field-theoretical point of view.

3) Another motivation for considering magnetized orbifolds is to realize the CP violation in the quark
sector LEET via higher-dimensional supersymmetric Yang-Mills theories (see Ref. [19]).
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where η denotes the Z2 parity η = ±1.
It was pointed out in Refs. [24, 15] that the physical eigenstates ψT 2/Z2 ±,n on T 2/Z2 are

easily obtained as

ψj
T 2/Z2 +,0(z) =

1√
2
(ψj

+,0(z) + ηψj
+,0(−z))

=
1√
2
(ψj

+,0(z) + ηψM−j
+,0 (z)), (18)

where we used the important property ψj
+,0(−z) = ψM−j

+,0 (z). This expression is just a formal
solution of the zero-mode equations in Eqs. (7) and (8). For an arbitrary number of quantized
fluxes, the number of independent zero-mode wave functions is counted as shown in Table 1.

Next, normalizable wave functions of the excited KK modes (n ≥ 1) are similarly written
as

ψj
T 2/Z2 ±,n(z) =

1√
2
(ψj

±,n(z)± η(−1)nψM−j
±,n (z)), (19)

where we use a similar formula for the KK modes on T 2: ψj
±,n(−z) = (−1)nψM−j

±,n (z). The
eigen–wave functions in Eqs. (18) and (19) keep the same mass spectrum as those on T 2, i.e.,

(
D†D 0
0 DD†

)(
ψT 2/Z2 +,n

ψT 2/Z2 −,n

)

= m2
n

(
ψT 2/Z2 +,n

ψT 2/Z2 −,n

)

, (20)

m2
n =

4πM

A n, (21)

except for ψ−,0, which has no consistent solution when M > 0 on T 2. These expressions are
also formal solutions and the number of independent physical modes is calculated. In Tabs. 1
and 2, the number of independent KK wave functions is shown. Here, we mention the ranges
of the index j after the Z2 orbifolding. The index j starts from zero or one in a Z2-even or
Z2-odd case, respectively, since the j = 0 component apparently vanishes in the latter case.
Also, to avoid double counting, when the number of independent physical modes is nmode,
the first nmode values of j are taken as individual degrees of freedom.

Before closing this section, it is important to discuss the orthonormal condition for the
physical eigenstates of the KKmodes on T 2/Z2. Let us consider an overlap integral of physical
states on T 2/Z2,

∫

T 2

d2z ψj
T 2/Z2 ±,n

(
ψj′

T 2/Z2 ±,n′

)†
= δn,n′

(
δj,j′ + η(−1)nδj+j′,M

)
, (22)

where the Kronecker delta appearing in this relation should be interpreted as that with
modulo M . It is easy to see that the second term on the right-hand side provides a nonzero
contribution only for j+j′ =M , which is rephrased as j = j′ =M/2 (modM/2) for η = +1.
Thus, by redefining a normalization constant as

N = (2M/A2)1/4 =⇒ Nj = (2M/A2)1/4/
√

1 + δj,M/2, (23)

6



M 0 1 2 3 4 5 6 7 8 9 2k 2k + 1
η = +1 1 1 2 2 3 3 4 4 5 5 k + 1 k + 1
η = −1 0 0 0 1 1 2 2 3 3 4 k − 1 k

Table 1: The number of independent KK wave functions for even n on T 2/Z2 with fluxes.
The general forms are valid for M ≥ 1.

M 0 1 2 3 4 5 6 7 8 9 2k 2k + 1
η = +1 0 0 0 1 1 2 2 3 3 4 k − 1 k
η = −1 1 1 2 2 3 3 4 4 5 5 k + 1 k + 1

Table 2: The number of independent KK wave functions for odd n on T 2/Z2 with fluxes.
The general forms are valid for M ≥ 1.

the wave functions are normalized and orthogonal to each other, such as

∫

T 2

d2z ψj
T 2/Z2 ±,n

(
ψj′

T 2/Z2 ±,n′

)†
= δn,n′δj,j′. (24)

Now, the normalization constant Nj becomes dependent on j.
Being similar to the wave functions on T 2, the results for the spinor are applied to the

scalar case as

φj
T 2/Z2,n

(z) =
1√
2
(φj

n(z) + η(−1)nφM−j
n (z)). (25)

Here, we immediately confirm the corresponding relations for the mass eigenvalues,

∆φj
T 2/Z2,n

(z) = m2
nφ

j
T 2/Z2,n

(z), (26)

m2
n =

2πM

A (2n+ 1). (27)

The multiplicity of the wave finctions is also the same as that of the spinor.

3 Brane-localized masses on a magnetized orbifold back-

ground

Before introducing brane-localized masses in magnetized extra dimensions, let us explain fixed
points on toroidal orbifolds. As explained already, toroidal orbifolds T 2/ZN for N = 2, 3, 4, 6
are obtained by an identification of two-dimensional extra dimensions under the toroidal
periodicities and the ZN rotation,

z ∼ z + 1 ∼ z + τ ∼ e2πi/Nz, (28)

where we keep the complex structure parameter in the general form. An important factor
in extra-dimensional model constructions is the presence of orbifold fixed points zfixed. For

7



Figure 1: The fundamental region of the orbifold T 2/Z2 and the four fixed points on it.

T 2/Z2, there exist four fixed points zfixed = 0, 1/2, τ/2, (1 + τ)/2, as shown in Fig. 1. For
the other orbifolds, the fixed points are located at zfixed = 0, (2 + τ)/3, (1 + 2τ)/3 for T 2/Z3,
zfixed = 0, (1 + τ)/2 for T 2/Z4 and zfixed = 0 for T 2/Z6, respectively. Except for T 2/Z2, the
complex structure parameter should be discretized as τ = e2πi/N due to consistency conditions
of crystallography [26]. For later convenience, the fixed points of T 2/Z2 are labeled as

z1 = 0, z2 =
1

2
, z3 =

i

2
, z4 =

1 + i

2
. (29)

We recall that all of the actual calculations are done with the simple choice of τ = i.

3.1 Scalar

We introduce a brane-localized mass at a fixed point corresponding to the origin of two
extra directions, i.e., z = z1 (= 0). The Lagrangian for the complex 6D scalar field under
consideration is given as

L = −|DMΦ(xµ, z)|2 − h |Φ(xµ, z)|2δ2(z − z1). (30)

Here, the real dimensionless variable h denotes the scalar mass localized at the fixed point,
where the mass scale is provided by the radius R. Also, this Lagrangian straightforwardly
provides the six-dimensional equation of motion,

DMD
MΦ− hΦδ2(z − z1) = 0. (31)

By substituting the KK-expanded scalar (6) for Eq. (30), the effective Lagrangian after
dimensional reduction is calculated as

Leff = −
∑

n,j

(∂µϕ
j
n)

†(∂µϕj
n)

−
∑

n,n′

∑

j,j′

(ϕj
n)

†

(∫

d2z (Dφj
T 2/Z2,n

(z))†
(
Dφj′

T 2/Z2,n′(z)
)
+ h(φj

T 2/Z2,n
(z1))

†φj′

T 2/Z2,n′(z1)

)

ϕj′

n′

≡ Lkin −
∑

n,n′

∑

j,j′

(ϕj
n)

†M2
(n,j),(n′,j′)ϕ

j′

n′ , (32)
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where Lkin represents the kinetic terms of KK scalar particles, which are canonically normal-
ized. The explicit form of the KK mass matrix after the perturbation is given as

M2
(n,j),(n′,j′) =

2πM

A (2n+ 1)δn,n′δj,j′ + h (φj
T 2/Z2,n

(z1))
†(φj′

T 2/Z2,n′(z1))

= m2
0 (2n+ 1)δn,n′δj,j′ + 2h (vn,j)

†vn′,j′ (33)

with m2
0 = 2πM/A, where we adopt the shorthand notation

vn,j ≡
1√
2
φj
T 2/Z2,n

(z1) = φj
n(z1)

=
Nj√
2nn!

∑

ℓ∈Z

e−πM( j

M
+ℓ)2Hn

(√
2πM( j

M
+ ℓ)

)
. (34)

Here, we mention the sign of the parameter h. When h is positive/negative, no/possible
tachyonic modes appear in the spectrum.

An extension to the localized mass term at the other fixed points is straightforward; all
we need to do is change z1 to zi (i = 2, 3, 4) in vn,j. Here, we comment on the fourth fixed
point z4 and effects from the localized mass on it. Via direct calculations, we obtain

φj
T 2/Z2,n

(−zk) = (−1)Mδk,4 η φj
T 2/Z2,n

(zk) (35)

for k = 1, 2, 3, 4. This implies that when η = −1 there is no effect, except for k = 4 with odd
M .4) In this paper, we restrict ourselves to the case of η = +1. Such brane-localized mass
terms of the scalar field possibly affect physics at low energies. Hence, we are interested in
the eigenvalues and eigenvectors of the perturbed mass matrix in Eq. (33). We note that the
above relation is also derived from the pseudoperiodic boundary conditions on both T 2 and
T 2/Z2 (see, e.g., Ref. [15]),

φj
T 2 or T 2/Z2,n

(z + 1) = eiqχ1(z)φj
T 2 or T 2/Z2,n

(z), (36)

φj
T 2 or T 2/Z2,n

(z + i) = eiqχi(z)φj
T 2 or T 2/Z2,n

(z), (37)

χ1(z) =
b

2
Im(z), χi(z) = − b

2
Im(iz), (38)

by setting z as 0, −1/2, −i/2, or −(1 + i)/2. We will diagonalize this KK mass matrix in
the following.

First of all, we comment on the cutoff scale. Unfortunately, extra-dimensional models
are nonrenormalizable, and hence they should be considered as a kind of LEET of a more
fundamental theory, e.g., string theory at a scale below the cutoff scale Λ. In the following
discussion, we define the cutoff scale as a certain level of the KK masses, i.e.,

m2
0 < m2

1 (= 3m2
0) < ... < m2

nmax
≡ Λ2 < m2

nmax+1 < · · ·, (39)

where Λ is related to the size of the perturbed KK mass matrix by turning on the brane-
localized mass term.

4) In other words, when η = +1, a brane-localized mass term manifestly vanishes only in the case of k = 4
with odd M (see also Table 4).
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α 1 2 ... de de + 1 de + 2 ... M M + 1 M + 2 ... M + de ...
n 0 0 ... 0 1 1 ... 1 2 2 ... 2 ...
j 0 1 ... de − 1 1 2 ... do 0 1 ... de − 1 ...

Table 3: Relationships between α and (n, j).

α 1 2 3 4 5 6 7 8 9 ...
(n, j) (0, 0) (0, 1) (1, 1) (2, 0) (2, 1) (3, 1) (4, 0) (4, 1) (5, 1) ...

Table 4: Relationships between α and (n, j) for M = 3.

Also, a few comments about the cutoff of theories in extra dimensions are in order. When
the reference energy in the renormalization group evolution crosses the mass of KK particles,
beta functions take contributions from the states. Cumulative spectra of KK particles, which
are a generic structure of compact extra dimensions, lead to a rapid increase and decrease of
effective 4D couplings immediately once the reference scale passes the lowest KK state (see,
e.g., Ref. [27, 28, 29]). Therefore, in general the cutoff scale should be close to the typical
size of KK particles. When the cutoff scale is not very far away from the electroweak scale,
corrections via higher-dimensional operators are not suppressed. On the other hand, when
the KK mass scale is far away from the electroweak scale, such contributions are subdued
(though the cutoff scale is close to the typical scale of KK states). Hence, for an extra-
dimensional theory with a sufficiently heavier KK mass scale compared with the scale of
electroweak physics, the fact that the cutoff scale should be near the typical scale of KK
particles does not seem to be problematic.

It is convenient to relabel the indices (n(′), j(′)) in the KK mass matrix in Eq. (33) in
terms of a new label α. We describe the degeneracy of the wave functions for even n (odd
n) by de (do), which gives us the useful relation M = de + do. We can define a one-to-
one labeling as shown in Table 3.5) For example, when M = 3, an explicit correspondence
between α and (n, j) (up to the ninth mode) is shown in Table 4. In terms of this labeling, the
KK mass matrix (“wavefunction vector”) is expressed as M2

(n,j),(n′,j′) → M2
α,β (vn,j → vα),

respectively. Also, by use of the information in Tables 1 and 2, the size of the mass matrix
is easily estimated as

αmax =

{

M × (k − 1) + de for nmax = 2(k − 1),

M × k for nmax = 2k − 1,
(k = 1, 2, 3, · · · ) , (40)

Now, we are ready to analyze the perturbed KK mass matrix. As a first illustration,
let us consider M = 3 and Λ = m1, where de = 2, do = 1, and α runs over 1, 2, 3. The

5) When η = +1 and n is odd, mode functions vanish in j = 0. Therefore, j starts from one (not zero) in
the category n = 1 in Table 3.
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corresponding 3× 3 KK mass matrix is given as

M2
α,β =





m2
0 + 2h|v1|2 2hv†1v2 2hv†1v3
2hv†2v1 m2

0 + 2h|v2|2 2hv†2v3
2hv†3v1 2hv†3v2 m2

1 + 2h|v3|2



 , (41)

and three eigenvalues can be analytically solved as

m2
0, 2m2

0 + h(|v1|2 + |v2|2 + |v3|2)±
√

(m2
0 + h(|v1|2 + |v2|2 + |v3|2))2 − 4hm2

0(|v1|2 + |v2|2),
(42)

where we used the relationm2
1 = 3m2

0. Here, the eigenvalue is unperturbed asm2
0. By focusing

the property |vαR|2 . 1, which is recognized by the correct normalization of the mode
functions, the other eigenvalues are roughly estimated as m2

0(1 + O(h)) and m2
1(1 + O(h)).

Thus, we find that one of the original lowest KK masses, i.e., m2
0 appears after turning on

the brane-localized mass.
When the cutoff scale is chosen as Λ = m3, where α = 1, 2, ..., 6, the corresponding

eigenvalues are calculated in a similar manner as m2
0, m

2
0(1 + O(h)), m2

1(1 + O(h)), m2
2,

m2
2(1 + O(h)), and m2

3(1 + O(h)). We find that one of the second excited states is also
unperturbed.

The above discussion can be extended to the generic magnitude of the magnetic flux
and an arbitrary cutoff scale. The KK mass matrix with a brane-localized mass can be
symbolically expressed as

M2 = diag (m2
0, m

2
0, ..., m

2
0

︸ ︷︷ ︸

de

, m2
1, m

2
1, ..., m

2
1

︸ ︷︷ ︸

do

, m2
2, m

2
2, ..., m

2
2

︸ ︷︷ ︸

de

, · · · ) + v† ⊗ v, (43)

where (v)α = (v1, v2, ...) denotes an αmax component complex vector. For de ≥ 2, there always
exists an eigenvector for the lowest mode (n = 0),

(un=0)α = (u1, u2, ..., ude, 0, 0, · · · ), (44)

which satisfies v · un=0 = 0. In the above example (M = 3), there exist de − 1 linearly
independent eigenvectors that satisfy v · un=0 = 0 as

(

u
(1)
n=0

)

α
= (−v2, v1, 0, 0, ..., 0
︸ ︷︷ ︸

de

, 0, 0, · · · ), (45)

(

u
(2)
n=0

)

α
= (0,−v3, v2, 0, ..., 0
︸ ︷︷ ︸

de

, 0, 0, · · · ), (46)

...
(

u
(de−1)
n=0

)

α
= (0, 0, ..., 0,−vde, vde−1
︸ ︷︷ ︸

de

, 0, 0, · · · ), (47)

where we cannot take another eigenvector that is linearly independent of all of u
(1)
n=0,u

(2)
n=0, ...,u

(de−1)
n=0 .

This fact suggests that one of the lowest modes is uplifted by the perturbation after turning
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on the brane-localized mass. For any level of the degenerate mass eigenvalues before the
perturbation, we find that such vectors provide the corresponding eigenvalue as

M2un = m2
nun + v†(v · un) = m2

nun. (48)

We would like to comment on the effects from multiple localized mass terms. For example,
we turn on two localized masses h1|Φ|2 and h2|Φ|2 at z = z1 and z = z2, respectively. Here,
the corresponding KK mass matrix is

(
M2

)

α,β
= (2n+ 1)m2

0δα,β + 2h1v
(1)†
α v

(1)
β + 2h2v

(2)†
α v

(2)
β , (49)

where we define

v(1)α ≡ v
(1)
n,j = φj

n(z1), (50)

v(2)α ≡ v
(2)
n,j = φj

n(z2). (51)

The degeneracies of the KK states via magnetic fluxes are degraded one by one as we place
the brane-localized mass. We provide a detailed discussion on such cases in Appendix B.

Before closing this section, it is important to mention a 6D vector field, which is de-
composed into a (4D) vector component (Aµ) and two scalar components (A5, 6) from the
four-dimensional point of view. The KK mass spectra of a vector field which feels magnetic
fluxes on a flux background were analyzed in Ref. [25], which provided KK eigenvalues of the
two corresponding 4D scalars of φn,z ≡ (A5 + iA6)/

√
2 as

m2
n =

2πM

A (2n− 1), (52)

and of φn,z̄ ≡ (A5 − iA6)/
√
2 as

m2
n =

2πM

A (2(n+ 1) + 1), (53)

where the spectrum of the vector field is equivalent to φn,z̄ through suitable gauge fixing.
Here, we would pay attention to two points. One is that the equation of motion of the 6D
scalar Φ takes a different form than those of φn,z and φn,z̄, which leads to the difference in
the mass spectra. The other is that in the present Abelian case, the 6D vector field does not
feel any magnetic flux. The situation where the 6D vector field couples to magnetic flux is
realized in a non-Abelian gauge theory, which is a reasonable playground for unified theories.

From Eq. (52), we recognize a pathology of the emergence of the tachyonic state in
φn=0,z, which is a critical obstacle for constructing reasonable models. An ordinary remedy
for conquering the difficulty is to address supersymmetrized theories, where if 4D N =
1 supersymmetry remains in the action (before taking into account the connection to the
supersymmetry-breaking sector), such tachyonic states are stabilized (see, e.g., Refs. [23,
25]). On the other hand, issues discussed in this manuscript would provide another clue to
circumventing the obstacle by uplifting the tachyonic mode via a brane-localized mass term
for φn,z.
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When localized mass terms, e.g., hA2
5 (and hA2

6) are induced after non-Abelian gauge
symmetry breaking (i.e., introducing fluxes and/or Wilson lines)6) the above discussion is
relevant for analyzing the KK mass matrix of such kinds of scalars, in spite of the difference
in the pattern of the KK masses.

3.2 Spinor

We express the 6D Weyl spinor as Ψ = (λ+, λ−)
T in terms of four-component Weyl spinors

λ+ and λ−. Then, its KK decomposition is given as

λ+(x
µ, z) =

∑

n,j

χj
+,n(x

µ)⊗ ψj
T 2/Z2 +,n(z), (54)

λ−(x
µ, z) =

∑

n,j

χj
−,n(x

µ)⊗ ψj
T 2/Z2 −,n(z). (55)

The Lagrangian for the 6D Weyl spinor is given as

L = iΨ̄ΓMDMΨ+ (iν̄γµ∂µν − g(ν̄λ+ +H.c.))δ2(z − zk), (56)

where g is a massless parameter associated with the localized mass of the spinor. Note that
the 6D Weyl spinor cannot possess a Dirac mass term such as Ψ̄Ψ [7]. Then, we add a
four-dimensionally localized Weyl spinor field ν(xµ) and introduce a localized mass term at
a fixed point zk.

In the following, we place the localized mass at a fixed point of T 2/Z2 [see Eq. (29)]. It
is easily found that λ−(x

µ, zk) = 0 (λ+(x
µ, zk) = 0) [k = 1, 2, 3] for η = +1 (η = −1),

respectively. Hence, we cannot introduce such a mass for λ− at the three fixed points.
Therefore, we focus on the case of η = +1, as in the previous section. It is straightforward
to expect that we can similarly analyze the case of η = −1. Hereafter, we choose the 6D
chirality of Ψ as −1, which means that left-handed chiral modes are realized as zero modes of
λ+ (see Appendix A). The 4D chirality of ν is automatically determined to be right-handed.

The spinor Lagrangian in Eq. (56) provides the six-dimensional equations of motion,

iγµ∂µλ+ +D†λ− − gνδ2(z − zk) = 0, (57)

iγµ∂µλ− −Dλ+ = 0, (58)

(iγµ∂µν − gλ+)δ
2(z − zk) = 0. (59)

Removing λ− and ν from these equations leads to the (six-dimensional) equation of motion
for λ+,

(
∂µ∂

µ +D†D
)
λ+ − g2λ+δ

2(z − zk) = 0, (60)

6) Actually in the present situation, an Abelian gauge field (and Cartan parts of a non-Abelian gauge
field) cannot feel magnetic fluxes and thus the lowest mode remains massless, while non-Cartan parts of a
non-Abelian gauge field can detect such fluxes and can be massive. Also, we mention that a gauge-invariant
mass term via (classical) flux configurations cannot be confined within a 4D world, which means that other
extra spacial direction(s) should be required in addition to the present two directions to realize the localized
mass term of φn,z and φn,z̄ in a gauge-invariant way.
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where the operator D†D is equal to ∆− 2πM/A, which indicates the mass difference in the
fermion case and scalar case as shown in Eqs. (13) and (15) when g = 0.

By plugging the KK decompositions (54) and (55) into Eq. (56), the effective Lagrangian
under the cutoff scale is calculated as

Leff = Lkin −
∑

n,j

(n6=0)

(

mnχ̄
j
+,nLχ

j
−,nR + gν̄Rχ

j
+,0Lψ

j
T 2/Z2 +,0(zk) + gν̄Rχ

j
+,nLψ

j
T 2/Z2 +,n(zk) + H.c.

)

≡ Lkin −
∑

n,j

(n6=0)

(ν̄R, χ̄
j
−,nR)M

(

χj
+,0L

χj
+,nL

)

+H.c., (61)

where Lkin contains kinetic terms and the corresponding 4D chiralities are explicitly shown
for clarity. The perturbed KK mass matrix M under the brane-localized spinor mass term
is symbolically expressed as

M =

(√
2 gψj

+,0(zk)
√
2 gψj

+,n(zk)

0 mn

)

. (62)

Here, note that the index n takes nonzero positive integer values in the above expressions,
and also that we use the relation ψj

T 2/Z2 +,n(zk) =
√
2ψj

+,0(zk). Here, the size of M is (1 +

NKK)× (de +NKK), where NKK represents the number of excited KK modes that appear up
to the level designated by nmax. The relation is easily understood among NKK and αmax as
defined in Eq. (40),

NKK = αmax − de, (63)

because de represents the number of zero modes.
Since the matrix M is asymmetric, it is convenient to consider the following two forms

of products of the matrix

(MM†)α,β = (Π2
R)α,β +

√
2 g(V †

RΠR)α δ0,β +
√
2 g(ΠRVR)β δ0,α

+2g2

[
de−1∑

j=0

|v0,j|2 +
NKK∑

ρ=1

|(VR)ρ|2
]

δ0,αδ0,β (α, β = 0, 1, · · · , NKK), (64)

(M†M)α,β = (Π2
L)α,β +

√
2 g(V †

R)α(VR)β (α, β = 1, 2, · · · , αmax= NKK + de), (65)

for the right- and left-handed Weyl spinors (νR, χ
j
−,nR) and (χj

+,0L, χ
j
+,nL), respectively. Here,

we see that α = 0 corresponds to the 4D localized field νR in Eq. (64). The sizes of the matrices
MM† and M†M are (1 + NKK) × (1 + NKK) and (de + NKK) × (de + NKK), respectively.
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Also, we define the following symbols

(ΠR)α,β ≡ diag(0, m1, m1, ..., m1
︸ ︷︷ ︸

do

, m2, m2, ..., m2
︸ ︷︷ ︸

de

, · · · ), (66)

(VR)α ≡ (0, v1,1, v1,2, ..., v1,do
︸ ︷︷ ︸

do

, v2,0, v2,1, ..., v2,de−1
︸ ︷︷ ︸

de

, · · · )T, (67)

(ΠL)α,β ≡ diag(0, 0, ..., 0
︸ ︷︷ ︸

de

, m1, m1, ..., m1
︸ ︷︷ ︸

do

, m2, m2, ..., m2
︸ ︷︷ ︸

de

, · · · ), (68)

(VL)α ≡ (v0,0, v0,1, ..., v0,de−1
︸ ︷︷ ︸

de

, v1,1, v1,2, ..., v1,do
︸ ︷︷ ︸

do

, v2,0, v2,1, ..., v2,de−1
︸ ︷︷ ︸

de

, · · · )T, (69)

with vn,j ≡ ψj
+,n(zk).

In the spinor case, we recognize that the mass spectrum of the left-handed modes χj
+,0L

and χj
+,nL is equivalent to that of the scalar because the mass matrix squared in Eq. (65)

takes the same form as that in the scalar case.
On the other hand, we analyze the mass spectra of the 4D brane-localized field νR and the

right-handed modes χj
−,nR. For a vector (u)α (α = 0, 1, · · · , NKK), we calculate the product

of (MM†)α,β and uα as

NKK∑

β=0

(MM†)α,β(u)β =







√
2 g

NKK∑

β=1

(ΠRVR)β(u)β + 2g2

[
de−1∑

j=0

|v0,j|2 +
NKK∑

ρ=1

|(VR)ρ|2
]

(u)0 (α = 0),

NKK∑

β=0

(Π2
R)α,β(u)β +

√
2 g(V †

RΠR)α(u)0 (α ≥ 1).

(70)

Equation (70) implies that νR is perturbed by the presence of the localized mass since the
right-hand side for α = 0 may be nonvanishing in almost all cases. This is understood as fol-
lows. Since the right-handed spinors χj

−,nR are originally massive around the compactification

scale (∼ 1/
√
A), we can determine whether νR is massless or massive only by investigating

the determinant of MM†. This is because the determinant of a matrix is equal to the
product of its eigenvalues. If the determinant is nonzero, we can conclude that νR becomes
massive.

Here, let us focus on a simple example forM = 3 and Λ = m2. For the right-handed fields
(νR, χ

0
−,1R, χ

1
−,1R, χ

1
−,2R), the 4 × 4 KK mass matrix squared MM† is symbolically written

with the symbols a, b, c and d as

MM† =







2 g2d
√
2 gam1

√
2 gbm1

√
2 gcm2√

2 ga†m1 m2
1 0 0√

2 gb†m1 0 m2
1 0√

2 gc†m2 0 0 m2
2






. (71)

Here, g is a dimensionless coefficient in the localized mass term of the spinor field. The
determinant of this matrix is calculated as

det
(
MM†

)
= 2g2m4

1m
2
2

(
d− |a|2 − |b|2 − |c|2

)
, (72)
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where mass dimensions of the four symbols are two (for d) and one (for a, b, c). For a
nonzero coefficient (g 6= 0), a miraculous cancellation should occur among the symbols a, b, c
and d to realize detMM† = 0, which suggests that νR is still massless after the localized-
mass perturbation. Although we note that we could not find a concrete example where the
cancellation happens, our conclusion is that νR gets a mass via the localized mass in almost
any case. When M and/or Λ is arbitrary, configurations of nonzero components in the mass
matrix squared MM† look similar. Therefore, this kind of discussion is still valid.

The matrices MM† and M†M contain NKK+1 and NKK+ de numbers of squared mass
eigenvalues, respectively, where NKK values are common in both of the matrices. These
modes mainly originate from the KK mass terms χj

−,nRχ
j
+,nL +H.c. which exist even before

the perturbation.

4 Deformations of the KK wave functions

As discussed in Sec. 3, we found that at least one of the lowest KK masses remains after
introducing one brane-localized mass term if the number of the lowest modes is greater than
or equal to two. In this section, we investigate what happens on the corresponding KK wave
function after the perturbation.

A physical sense of such deformations is a possible modulation of three-point effective
interactions, i.e., Yukawa couplings in phenomenological models, which are characterized by
the overlap integrals of three types of KK wavefunctions.7) The Yukawa couplings on T 2/Z2

are expressed as

yαβγ ∼
∫

T 2

d2z ψα
T 2/Z2

(z)ψβ
T 2/Z2

(z)(φγ
T 2/Z2

(z))†, (73)

where α, β and γ discriminate the physical eigenstates on magnetized T 2/Z2 before the
perturbation by turning on single or multiple brane-localized mass terms. For example,
when we introduce a localized mass term for the 6D scalar field, the profiles of KK mode
functions describing the lowest states would be changed as φα

T 2/Z2
(z) (α = 1, 2, ..., de) →

φimass

T 2/Z2
(z) (imass = 1, 2, ..., de − 1). Accordingly, the Yukawa couplings are expected to be

changed as
∫

T 2

d2z ψα
T 2/Z2

(z)ψβ
T 2/Z2

(z)(φγ
T 2/Z2

(z))† →
∫

T 2

d2z ψα
T 2/Z2

(z)ψβ
T 2/Z2

(z)(φimass

T 2/Z2
(z))†. (74)

It is also expected that the same holds for localized mass terms of the spinor. Although we
do not analyze such Yukawa couplings in the presence of brane-localized masses in this paper,
it is important to investigate the change of the lowest KK mode functions.

As an illustrative example, we consider a simple example in the scalar case for M = 3
and Λ = m1 = 18π/A, and then α = 1, 2, 3 [corresponding to (n, j) = (0, 0), (0, 1), (1, 1)].
Then, the KK mass matrix under consideration is the same as the expression in Eq. (41). For
h = 0.5, the eigenvalues (divided by m0) of Eq. (41) are numerically obtained as

(m/m0)
2 = 1.00000, 1.08008, 3.05828, (75)

7)For example, see Refs. [23, 30] and also Ref. [31].
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and also the corresponding eigenvectors are given as

u(1) = (0.459701,−0.888074, 0), u(2) = (−0.88755,−0.45943, 0.0343449),

u(3) = (0.0305008, 0.0157884, 0.99941). (76)

The corresponding wave functions unaffected/affected by the brane-localized mass are ob-
tained by internal products of the above eigenvectors and the KK wave functions before the
perturbation φα ≡ (φ0

T 2/Z2,0
, φ1

T 2/Z2,0
, φ1

T 2/Z2,1
), i.e.,

φimass(z) ≡
3∑

α=1

(
u(imass)

)

α
φα(z) (imass = 1, 2, 3) . (77)

We show the probability densities |φimass(z)|2 of the KK wave functions with mass eigenvalues
that are unaffected/perturbed by the brane-localized mass at z = z1 for M = 3 in Fig. 2,
where a red cross denotes a position with the brane-localized mass. Figure 2 tells that an
unaffected mode (imass = 1) avoids the position with the localized mass, and also that the
other affected modes (imass = 2, 3) are localized at the position with the localized mass.
The trend that unaffected modes avoid the position with the localized mass is also found in
situations with multiple localized masses (see Fig. 3).

We provide another example with M = 4 and Λ = m1 (α = 1, 2, 3, 4), and two brane-
localized mass terms at the two fixed points z = z1 and z = z2. The sketches of wave function
localizations are shown in Fig. 3. Here, we can see that two of the three lowest modes before
the perturbation (see Table 1) are uplifted.

Figure 2: The probability densities |φimass(z)|2 of the KK wave functions with mass eigenvalues
that are unaffected (imass = 1)/perturbed (imass = 2, 3) by the brane-localized mass at z = z1
for M = 3 and h = 0.5. A red cross denotes a position with the brane-localized mass. The
corresponding mass eigenvalues after the perturbation are also shown. The values of the ratio
(m/m0)

2 before the perturbation are 1, 1, and 3, respectively.
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Figure 3: The probability densities |φimass(z)|2 of the KK wave functions with mass eigenvalues
that are unaffected (imass = 1)/perturbed (imass = 2, 3, 4) by the brane-localized mass terms
at z = z1 and z = z2 for M = 4 and h = 0.5. The two red crosses in each panel denote
the positions where the brane-localized mass terms are located. The corresponding mass
eigenvalues after the perturbation are also shown. The values of the ratio (m/m0)

2 before
the perturbation are 1, 1, 1, and 3, respectively.

5 Cutoff dependence of mass eigenvalues

Once we specify a cutoff scale Λ, we can write down the KK mass spectra with the brane-
localized mass below Λ. As concretely addressed in the previous section, when η = +1 and
M ≥ 2, a part of the lowest modes of the KK mass spectrum in the scalar is unaffected
by the presence of a single localized mass term, where the values of such unperturbed mass
eigenstates are independent of the cutoff scale Λ. On the other hand, some mass eigenvalues
are perturbed and get heavier by the effect of the localized mass term, where the degree
of such deformations would depend on the cutoff scale. We suppose that Λ = mnmax for a
certain nmax. Hereafter, we consider nmax instead of Λ.
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As before, we focus on M = 3. The two lowest modes without localized masses are
doubly degenerate and their KK masses are m2

0 = 6π/A. After introducing a localized mass
at z = z1, one of the two lowest modes gets heavier and the perturbed mass is roughly
estimated as m2 ∼ m2

0(1 + O(h)), assuming that |vαR|2 ∼ O(1). For the maximum of the
KK levels nmax, the ratio (m/m0)

2 can be interpolated as

(
m

m0

)2

≃ α1 + α2 lnnmax + α3 nmax, (78)

where αi (i = 1, 2, 3) are real constants. The cutoff scale dependence of the (squared) mass
ratio (m/m0)

2 is shown in Fig. 4 (Fig. 5), where we set h = 0.5 (h = 3.0), respectively.
Figures 4 and 5 tell us that the choic of cutoff scale does not drastically affect the mass ratio,
and we can conclude that such a cutoff dependence is irrelevant from a model-building point
of view [except for h being as huge as & O(10) and/or the compactification scale ∼ R−1

being as small as . O(1)TeV]. We also find that the cutoff dependence looks similar and
would be irrelevant for greater magnitudes of the fluxes.8) Also, we would like to comment on
the testability of the mass correction via localized masses through high-energy experiments.
When the coefficient of a localized mass h is small, the cutoff dependence is negligible (as
already explained) and it seems difficult to probe the effect by discovering several KK modes
and measuring the mass differences among them. Thus, the mechanism has difficulties from
the testability point of view. However, the main motivation of this research is to reveal the
relationship between the presence of localized masses and the number of fluxes (corresponding
to the number of unperturbed matter generations).

When we consider a high-scale extra-dimensional theory, the correction in KK states
(before the mass perturbation) seems to be less important. Nevertheless, we can claim that
the stability of the values of heavier states (compared with the electroweak scale) against the
perturbation is a good feature of the present scenario.

8) Here, we comment on approaches to treat brane-localized mass terms. The simplest method adopted in
our analysis—where an effective mass matrix with infinite numbers of columns and lows is derived through
KK expansions, and we (numerically) diagonalize an approximated form with a truncation of higher modes
holding heavier KK masses than a cutoff scale Λ—is enough when results are not sensitive to values of the
cutoff. For more precise discussions, the techniques with the theta functions argued in Refs. [7, 13] would be
useful. See also, e.g., Refs. [32, 33] (and references therein) for discussions on the bulk-boundary interplay of
higher-dimensional fields.
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Figure 4: The cutoff scale dependence of the squared mass ratio (m/m0)
2

for a perturbed mode. Fitting parameters are chosen as (α1, α2, α3) =
(1.07999,−0.00265445, 9.10443× 10−6). Note that the ratio before the perturbation is
(m/m0)

2 = 1.

Figure 5: The cutoff scale dependence of the squared mass ratio (m/m0)
2 for a perturbed

mode. Fitting parameters are chosen as (α1, α2, α3) = (1.39949,−0.0523681, 0.0009029).
Note that the ratio before the perturbation is (m/m0)

2 = 1.

6 Conclusion

In this paper, we have considered effects on the KK mass spectra via the presence of brane-
localized masses at fixed points of a toroidal orbifold T 2/Z2 with magnetic fluxes. Under
the presence of the magnetic fluxes on the toroidal and orbifold compactifications, the mag-
netic fluxes are quantized and become topological indices, and then the multiplicity of KK-
decomposing wave functions appears in the low-energy effective theory.

We have added single or multiple brane-localized masses at the fixed points of T 2/Z2 where
some parts of the KK spectrum on T 2 are projected out by the orbifolding, while multiple
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degenerated modes still remain (if M ≥ 2). By analyzing the effects of the localized masses
using linear algebra, we have found that, at each KK level, one or more of the degenerate KK
masses are perturbed, when single or multiple brane-localized mass terms are introduced.
This discussion is valid for both of the six-dimensional scalar and spinor fields. In addition,
we have also investigated deformation in wave functions through the localized mass terms
and the cutoff dependence of the magnitude of modulations in the mass eigenvalues.

The mechanism which we have investigated in this paper is useful for phenomenologies on
magnetized orbifolds, especially in constructing unified theories with a much heavier KK scale
compared with the electroweak scale, for decoupling some light exotic particles away from
the physics around the electroweak and TeV scales. An important point in the mechanism
in 6D is that particle spectra do not seriously depend on the magnitude of the coefficients
of brane-localized mass terms when the KK scale is sufficiently higher than the electroweak
scale, while the number of fixed points where brane-localized mass terms are injected plays
a significant role. Therefore, we can conclude that our mechanism is useful for removing
unwanted exotic light modes from low-energy effective theories without relying on the details
of theories in extra dimensions.

Applications to more generalized situations with nontrivial Scherk-Schwarz and Wilson
line phases as well as general choices in the complex structure parameter τ look fruitful.
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A Notation

In this appendix, we review our notation for 6D gamma matrices, which obey the Clifford
algebra

{ΓM ,ΓN} = −2gMN , gMN = diag(−1,+1,+1,+1,+1,+1). (79)

Our choice for the set of 6D gamma matrices is as follows:

Γµ =

(
γµ 0
0 γµ

)

, Γ5 =

(
0 iγ5
iγ5 0

)

, Γ6 =

(
0 γ5

−γ5 0

)

, (80)

where γ5 describes the 4D chirality, which is defined as γ5 = iγ0γ1γ2γ3. The matrix denotes
the 6D chirality and can be decomposed as

Γ7 = −Γ0Γ1Γ2Γ3Γ5Γ6 =

(
γ5 0
0 −γ5

)

= Γ4D chiral Γinternal (81)
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with

Γ4D chiral =

(
γ5 0
0 γ5

)

, Γinternal ≡ iΓ5Γ6 =

(
I4 0
0 −I4

)

. (82)

The matrix Γinternal describes eigenvalues of the internal chirality. The 6D chirality is calcu-
lated as the simple product of the 4D chirality and the internal chirality.

B Generic discussion in the scalar case

In the main sections, we mainly discussed the effects arising from the presence of a single
brane-localized mass. In this appendix, we extend the discussion to multiple brane-localized
mass terms and their effects on KK mass eigenvalues. The scalar case is addressed in the
following discussion, where the method to treat the fermion case is straightforwardly recog-
nized through the result for the scalar. The reason is that M2 for the scalar and M†M for
the fermion take the same form, as we pointed out in Sec. 3.2.

For example, we add another brane-localized mass to Eq. (43), and then obtain

M2 = diag (m2
0, m

2
0, ..., m

2
0

︸ ︷︷ ︸

de

, m2
1, m

2
1, ..., m

2
1

︸ ︷︷ ︸

do

, m2
2, m

2
2, ..., m

2
2

︸ ︷︷ ︸

de

, · · · ) + (v(1))† ⊗ v(1) + (v(2))† ⊗ v(2).

(83)

Here, we do not specify two distinct positions with the localized masses and symbolically
express (v(1))α = φα(zi) and (v(2))α = φα(zj) for zi 6= zj . In order to keep one of the original
lowest eigenvalues as m2

0 after diagonalizing the KK mass matrix, an eigenvector (u)α which
contains

(u)α = (u1, u2, ..., ude, 0, 0, · · ·) (84)

should simultaneously satisfy

v(1) · u = 0 ⇐⇒ v
(1)
1 u1 + v

(1)
2 u2 + ...+ v

(1)
de
ude = 0, (85)

v(2) · u = 0 ⇐⇒ v
(2)
1 u1 + v

(2)
2 u2 + ...+ v

(2)
de
ude = 0. (86)

The relations in Eqs. (85) and (86) ensure that (u)α is an eigenvector with the eigenvalue m2
0,

M2 u = m2
0 u+ (v(1))† ⊗

(
v(1) · u

)
+ (v(2))† ⊗

(
v(2) · u

)
= m2

0 u. (87)

When we recognize that whether an eigenvector is normalized or not does not affect the
number of linearly independent eigenvectors, we find that at least three nonzero components
are required in u as,

(u(1))α = (u
(1)
1 , u

(1)
2 , u

(1)
3 , 0, 0, · · · ), (88)

which obeys the simplified constraints,

v
(1)
1 u

(1)
1 + v

(1)
2 u

(1)
2 + v

(1)
3 u

(1)
3 = 0, (89)

v
(2)
1 u

(1)
1 + v

(2)
2 u

(1)
2 + v

(2)
3 u

(1)
3 = 0. (90)
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When we take u
(1)
1 = 1, which is just a scaling, the corresponding values of u

(1)
2 and u

(1)
3 are

fixed as

u
(1)
2 =

v
(1)
3 v

(2)
1 − v

(1)
1 v

(2)
3

−v(1)3 v
(2)
2 + v

(1)
2 v

(2)
3

, u
(1)
3 =

v
(1)
2 v

(2)
1 − v

(1)
1 v

(2)
2

v
(1)
3 v

(2)
2 − v

(1)
2 v

(2)
3

. (91)

Apparently, similar procedures can continue, e.g., for (u(2))α = (0, u
(2)
2 , u

(2)
3 , u

(2)
4 , 0, 0, · · · ).

Now, we can conclude that the number of linearly independent eigenvectors under two brane-
localized mass terms is de−2 (for even n) and do−2 (for odd n), respectively, unless anomalous

situations arise, e.g., −v(1)3 v
(2)
2 + v

(1)
2 v

(2)
3 = 0. In such exceptionally special cases, the number

of linearly independent eigenvectors does not obey the above criterion.
Situations with brane-localized mass terms at three (four) fixed points are scrutinized

in the same way, where de − 3 (de − 4) [for even n] and do − 3 (do − 4) [for odd n] inde-
pendent physical modes remain unperturbed in the case without accidental cancellation in
corresponding conditions.
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