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1 Introduction

At a fundamental level numerous extensions of quantum mechanics have been envisaged to meet
the growing challenges that the theory has thrown up from time to time. Inclusion of the field
of quaternions was an important advancement made by Birkhoff and von Neumann [1] about
eighty years ago to represent the pure states of a quantum system on any associative division
algebra (see also [2, 3, 4, 5] and the references therein). Against such a pursuit the commutative
ring of bicomplex numbers [6] has emerged as a viable discipline and indeed found a number of
applications over the years in different directions of quantum theory [7, 8, 9, 10, 11].

With the advent of models of parity (P)-time (T) symmetry [12, 13], also claimed [14] to be
a plausible alternative to the requirement of Hermiticity that is implicitly relied upon as a guid-
ing axiom in the standard quantum mechanics picture [15], there have been not only some active
theoretical developments but more importantly some experimental ones as well ([16]-[22]). Fur-
ther, realization of (P)-time (T) symmetry has also been suggested in Bose-Einstein condensates
[23], a double-well containing the latter with the gain or loss of particles being accounted for
simultaneously in one or the other well.

Briefly, in PT-symmetric quantum mechanics, the usual Hermiticity condition is replaced by
the commutativity of the Hamiltonian with the product of the parity (P : z — —x,p — —p, 1 —

—1) and time-reversal (T : © — z,p — —p, ¢ — —1) operators

PTH = HPT (1.1)

Such PT-symmetric Hamiltonians may possess either real or conjugate-complex spectra depend-
ing on whether all the eigenstates of H are eigenstates of the PT-operator as well (the case
of unbroken PT-symmetry) or ceases to be so (the case of broken PT-symmetry). In general,
non-Hermitian Hamiltonians, including a subclass of those coming under the pseudo-Hermitian
framework that is supposed to hold the roots of PT, appear in diverse areas of physics such
as, quantum optics, cosmology, atomic and condensed matter physics, magnetohydrodynamics,
among others. For detailed reviews of theoretical results and their applications see [24, 25] and

references therein.



It must however be noted that in contrast to the standard works on PJT-symmetry that are
largely focussed to linear Schrodinger equation, the study of Bose-Einstein condensate. in the
mean-field approximation, comes under the purview of the nonlinear Gross-Pitaevskii equation
equipped with the complex potential containing the harmonic-trap condensate. In nonlinear situ-
ations the commutative condition (1.1) is needed to be suitably modified to deal with the Gross-
Pitaevskii equation-like equation [26]. The effect of the nonlinearity leads to the dramatic feature
of the co-existence of PT-symmetric and PT-broken states in certain coupling regions.

In a recent study of the eigenvalue structure of Bose-Einstein condenstates in a PT-symmetric
double well, Dast et al [26] identified the category of nonlinear sectors and the idea of PT-
symmetry was extended to such systems. As a result of the nonanalytic nonlinear character of
the Gross-Pitaevskii equation, the number of solutions does not reflect conservation when the
eigenvalue spectrum is confronted with the states undergoing bifurcations even when complex
solutions are considered [27, 28, 29, 30]. This necessitates an analytic continuation to achieve
conservation and the procedure adopted was to separate the Gross-Pitaevskii equation into their
real and components. The point is that if one allows complexification for the real and imaginary
part of the wave function and the chemical potential, an analytic character of the two coupled
equations emerges leading to the conservation of the solutions. Note that in order not to confuse
with the usual imaginary unit 7, another unit of a similar type, the ¢, with a property that its square
also equals minus one has to be introduced. This results in a transition from the set of complex
numbers to an enlarged set of four dimensional hypercomplex numbers, i.e., the bicomplex num-
bers which are numbers defined by two different complex units. Such a continuation along with
the extension of the concept of PT-symmetry onto the domain of bicomplex algebra brings about
new symmetries leading to more enriched scenarios and also uncover the existence of new exotic
properties in the system. In a way inspired by the work of Dast et al [26] we aim to acquire, in
the present study, deeper insights into the nature of energy eigenvalues and eigenfunctions of the
analogous Schrodinger equation (ASI) corresponding to a bicomplex Hamiltonian and investigate
the role of the extended PT-symmetry principles. While the work [26] considered the typical two
types of PT-symmetries that bicomplexification offers due to the role of two independent imagi-

nary units namely, i and 7, we explore in this paper the existence of a third type of PT-symmetry



resulting from a separate class of the time reversal operator, the iz, that could flip both the imag-
inary units. Although handling three different types of distinct PT-symmetries requires lengthy
mathematical calculations, nevertheless, their formulation in a single framework provides an ex-
haustive enquiry into the different roles of PT-symmetry in such a bicomplex manifold. In this
connection we must mention that we do not intend to directly study the cases of [26] and [30] but
rather want to have an easy and controllable access to a bicomplex system.

In a general way the standard Schrodinger Hamiltonian H (z, p) can be bicomplexified con-
sidering each physical variable x and p as a bicomplex entity and generalizing the concept of the

extended complex phase space by following [31, 32] and defining for instance
X:l’l—i"ipg, p:pl—i-ixg (12)

where (x1, p1), (x2, p2) are canonical pairs of phase space variables and p = —ihd% is the momen-

tum operator in the usual coordinate space representation satisfying the usual quantum condition
[x, p] = ih. (1.3)

The Hamiltonian governing such a quantum system can be decomposed as H(x,p) =
H(z1,p1, %2, p2) = Hi(z1,p1, 02, p2) + iH (21, p1, Ta, P2).

The plan of this article is as follows: in section 2 we review the properties of bicomplex
numbers, in section 3 we formulate the bicomplex version of the ASE, in section 4 and section
5 we study the role of different extensions of PT-symmetry defined over the bicomplex algebra
carrying out the reduction of the ASE into a system of four coupled partial differential equations
whose analytic properties are responsible for the resulting structure of energy eigenvalues and
ground-state eigenfunctions, in section 6 we apply our approach to the typical problems of har-
monic oscillator, inverted oscillator and isotonic oscillator ending up finally in section 7 to present

the summary of our findings.

2 Preliminaries

We note that the set of complex numbers C consists of elements obtained by duplication of the

elements of the set of real numbers R as induced by a non-real unit i obeying i = —1 in the form
C={z=z+1y:z,y e R} 2.1
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We consider repetition of this duplication process on the members of C in the presence of a new

imaginary unit ¢ with the properties
2 =—1; ii=1i; ai=1a,Ya€ER
to extend C onto the set of bicomplex numbers
T={w=2+412:2,2€cChL (2.2)

In (2.2) an additional structure of commutative multiplication is imbedded.
Representing z; and 2, as defined in (2.1) i.e. 21 = x1 + ix5 and 25 = x3 + ix4, a bicomplex
number acquires the form

w=2x1 + 122 + %1’3 + i%x4. 2.3)

Clerly w is a combination of four units: the unity 1, two imaginary units i and i and one non-real
hyperbolic entity ii(= i) for which (72)? = 1. In particular if 2, = x3 = 0 the bicomplex number
goes over to the hyperbolic number. Looking into the algebraic structure of T it thus becomes a
commutative ring with unit.

For two arbitrary bicomplex numbers w = z; +12; and ' = 2} +iz}, where 2y, 29, 2}, 25 € C,

the scalar addition and scalar multiplication obey the rules

wtw = (z21+27)+ %(zz + 2) 2.4)

w_w/ = (lei — ZQZ&) + %(2221 + leé). (25)

2.1 Conjugates and moduli

Because of the operating of three distinct imaginary units it is evident that a bicomplex number
should admit the respective conjugates. Indeed, for any w = 2, + iz € T, the possible conjugates

are defined as follows

whh = 7 +12 (2.6)
wTQ = 21— %22 (27)
wh = 21— %22 (2.8)



where Zj, is standard complex conjugation of the complex number z;, implying w's = (w')f2 =

(w'2)T1, Each type of conjugation satisfies the standard properties of conjugation:

(w1 + LUQ)Tk = wI’“ + w;k
(@) = wr
(wi.w)fe = Wik Wik (2.9)

for any wy,wy € Tand k =1, 2, 3.

For the three conjugates, a bicomplex number can have the corresponding three moduli

Wi = wwh=2]+2 (2.10)
w2 = wwh=(zn2=]2]|*)+2iRe 2% (2.11)
w2 = wwB=(zn?+]|2]?)—2ilnzz (2.12)
Further the usual Euclidean norm || . ||: T — R of w reads
Twll= vz +] 2P (2.13)

The inverse of w is given by

1
Wl (2.14)

If w is singular then

i+ 2 =0 (2.15)

holds.

2.2 Idempotent representation

For later use we introduce two bicomplex numbers

1+ 1— i
=T 2T

(2.16)
satisfying the usual properties

2 2
e;+ex=1 e .ex=exe =0, e =e;, e, =es. 2.17)



Evidently e;, and e; are idempotent. They offer us a unique decomposition of T in that for any
w=2z + %22 eT

2 iz = (21 —iz)er 4 (21 + i25)ey (2.18)

is the projection. For a discussion of the unique decomposition of w in its idempotent representa-

tion, see Appendix B .

3 Analogous Schrodinger Equation

To construct a stationary ASE corresponding to the bicomplex Hamiltonian we need to analyti-

cally continue (1.2) on the bicomplex ring T in the manner

21 = x1 +1ip1, Dz, = p3 + T3,

29 = Ty + 1pa, D2y = P2 + 1T (3.1)

where (21, p3), (24, p2), (3, 1), (22, ps) stand for phase space variables.
To deal with the generalization addressing bicomplex numbers, let us consider specifically the

decompositions of x and p in the form
X=2z + %pZQ =x1 +1ip; + %pg + Q12 3.2)

P = p., + 120 = p3 + i3 + 124 + 11Dy, (3.3)

where (21, x5, x3, 24) are the components in the coordinate space and (p1, p2, p3, p4) are the com-

ponents in the momentum space. These satisfy the generalized commutation relation
[x,p| = ih&l (3.4)
¢ being a bicomplex number defined in terms of e; and e, namely
§ =&ier + &ae, (3.5

where & and &; are restricted to be positive quantities [34]. Note that for the particular case when

&1 and &, are each equal to unity, the usual quantum condition is recovered.



From (3.4) using the following representation of the momentum operator

o d
p= —Zﬁg& 3.6)
we obtain
4 1[0 o .o .o
dx N 4 81’1 8])1 8])2 83)2
p can be cast in the explicit form
h 0 0 h 0 0
P = 3 {—(51 +52)a—pl + (& — 52)8—1)2} —ig {(51 +§2)8—$1 + (& — 52)8—@}
0 0 ~h 0 0
+i {(51 £2)8—x1 + (& +£2)8—m2} — g {(51 — 52)8—])1 — (& +§2)a—pz}

On comparing with (3.3) we find
pg,:@{—<51+§2>i+<51—52>i},
:c {(m@) (6 - ) }
4:§{<£1 &)+ (614 &)
=g {6 -ap - @rar E }

1\3
H,_/

In the presence of an acting potential V (x), the Hamiltonian H (x, p) reads (in units of / =

m=1)

H(X7 p) = H(l’l,pl,pg,$2,p3,$3,$4,p4)
2
P

= 3+f/(x)_——§ —+V( ) (3.8)
where
2 2 2 ¢2
52 _ gl _552 + —I—Z'%gl 5 52‘ (3.9)

For the energy term E and wavefunction ¥(x) = ¢Y(x1, p1, p2, T2), the ASE then turns out to

be as given by

Hip(x) = Ev(x)
Ld*p(x) 1 1

S V() = FU(x) (3.10)
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where

N 1 -1
V(x) = 1—6§2V(X), E= Eng' (3.11)

4 Extended Time Reversal operators

The three types of conjugates of bicomplex numbers introduced earlier admit the corresponding

time reversal operators as will be explained in the following discussions.

4.1 T,-symmetry

First of all, we observe from the conjugation relation (2.6) that a class of time reversal operator

J; can be defined as identified by
Tii— —i, 114, “.1)
With the parity operator P obeying

P o= —n

pP1— —D1
P2 = —P2
To —> —T9 (42)

it easily follows from the PT-symmetric character of pi.e. PT : p — p that the following features

of T; hold:

‘Ii D1 — T

pP1—= —D1
P2 = P2
To —> —XT9y (43)

The restriction on £ is to be noted: & = &. It is also to be remembered that the symmetry

operator PT transforms in the coordinate space as X — —X.



4.2 T.-symmetry

While he transformation of P operator is similar to (4.2), following the conjugation relation (2.7)

we can define a second type of time reversal operator J: that transforms according to

Tt i, i+ —i (4.4)
As such T; transforms according to
T, oo
P1— p1
D2 = —P2
To > —To 4.5)
with & = —&,. However, because of the positivity restrictions on &; and &, it is clear that the

induced PT; cannot be a valid mode of PT symmetry.

4.3 T:-symmetry

Finally, following the conjugation relation (2.8) we can define a third type time reversal operator

7 ; that undergoes transformations as
T tivs —i, 1+ —i. (4.6)

and may be looked upon [26] as the combined operations of J; and J; where T; again has the
physical interpretation of time reversal and its action in the coordinate space amounts to the
replacement ¢ — —i. Along with (4.6) the transformation properties of P-operator as given by
(4.2) hold. Analogously we can define J; as the complex conjugation i — —1i which, however,
has no immediate physical interpretation.

Following the PT-symmetric character of p we also observe that

‘Iﬁ N A e N A}
P1— —p1
P2 = —D2

To > Ty (47)
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for all £&; and &,.

To sum up, we are left with, in a unique way, the pair P7T; and PT; as valid candidates of PT
symmetry in an extended bicomplex phase space. In future discussions we therefore address the
transformation properties of the underlying systems due to PT; and PT; symmetries. Note that in
such a case it is implied that £; = &,. Before we conclude this section it would be worthwhile to
look explicitly into the role and interplay of the two above PT-symmetries to classify the different
types of eigenvalues associated with them.

For a PT;-symmetric Hamiltonian H
[PT, H] =0, PTwp=1v, Ho=Ey (4.8)

Here unbrokeness of PT; is due to every eigenfunction i) of PTJ; symmetric H being also an
eigenfunction of the PT; operator. One clearly sees that in such case using the conjugation prop-

erty defined in (2.6)

Ey = H = HPTpp = PT,Hop = PT,E
= [Ey + iFy + iFs + 1By = PT,[Ey — iFy + iFs — 1Byt

= FE,=FE,=0.
On the other hand, for a P7J ;-symmetric Hamiltonian H

[T H] =0, PTpp=v, Hy=Ey (4.9)

i)

Here P7; is unbroken in the sense that if every eigenfunction ¢ of PT; symmetric / is also an

eigenfunction of the PT; operator. One clearly sees that in such case
B = Hyp = HPT ;o) = PTHp = PT B (4.10)
whence using the conjugation property defined in (2.8)
[Ey + By + iFs + 1By = PT;[Ey — iEy — 1E5 + i Eylt)

implying Fy = E3 = 0. This means PJ; and PT; have to act in conjunction to allow for the

eigenvalues be real.
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5 General results

The general four-component form of V| £/, 1) can be expanded to be

V o= Vi+iVa+iVa4aV, 5.1
E = FE,+iEy+iE; +iiE, (5.2)
Y = Py iy + by iy (5.3)

where ¢;, V}; j = 1,2, 3, 4 are functions of z1, p1, p2, Z2.
Substituting (5.1)-(5.3) into (3.10) a straightforward algebra leads to the following set of

relations

R A AV R
2\ 02 op> opt  9a2) ! dr10p,  O190ps )

62 82 02 82
- (al"la]b B 8x28p1> Vs = (8:)318:)32 - 0]?18]92) Ya+ Vi — Varhy — Vs + Vithy

= B — Eotpy — B3z + Egify, (5.4)
(5.5)

N YRR R
Ox10p1  Ox90ps 179 ox?  Op?  Ops  Ox3 2

9? 0? 0? 0?
+ (8x18x2 + 8p18p2) g — <8x18p2 — 8x28p1) Yy + Vig + Varhy — Vaihy — Vs
= By + Expy — Espy — Egps, (5.6)
5.7
82 _ 82 ¢+ 82 + 02 ¢_1 0_2_8_2_0_2+0_2 w
Ox,0py  Ox90py ) Ox10x2  OpOps) 0 2\ 022 op: op:  0a2) °
0? 0?
- <8x18p1 - 8@8]92) Yy + Viths — Vorhy + Vot — Viahy
= FEis — Eothy + Esthy — Egis, (5.8)
(5.9

0? o 0? 0? 0? 0?
- <0x10x2 " 0p1(‘9p2) i (8:610172 - (%2(‘9291) o (8:618291 - 0x28p2) &
1 [ 0 0? 0? 0?
- a—x%_a—p%_ﬁ—gﬁ+8—x§ Vg + Viths + Vahs + Vathe + Vit

= Eu + Eyps + Esthy + Egfy. (5.10)
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Using the Cauchy-Riemann conditions [33]:

Oy Oy Dbz OYy

Oy B op B Opo B 3$2’

Oy Oy Oy Oty
0z, B Op B Op2 B Oxy’
OYs _ a0 _ Oy
0z, - Op B Op2 B Oxy’
My O3 Oy O
Oy B op B Ops B 85527

in (5.4)-(5.10) we thus obtain a set of coupled equations

(T + Vi) — Varpg — Viaihs + Vg = Evipy — Eathy — Esths + Eytly,
(& + Vi)bo + Vo — Viathy — Vg = Enihg + Eotpy — Es)y — Eytbs,
(& + Vi)bs — Varhy + Vaihy — Vihy = Eyaps — Egthy + Estpy — Egipo,
( )

S+ Vi)s + Varbs + Vaihg + Vi = Eyhy + Ertps + Esipy + Bty

where

F=-

T8 38 18 509

It is convenient to represent (5.11) in the matrix form

where
$+Vi =W -V
m_ | VB ¥tV W
Vs Vi §+V
Vi Vs Va

We now write down 91 and e with respect to the idempotent basis matrices €1, €5 in their

unique representation namely,

MU = U
Vi E, —E,
—V3 ¢ — Ey, E;
-V ’ | Es —E4
S+ E, E;

81%1 + 82%2

E1€1 + E9€9

13

2022 2002 ' 20p 2043

_Fy
_E,
Ey
Es

Ey
_Fy
_F,

Ey

Y

(5.11)

(5.12)

(5.13)

U —

(5.14)

(5.15)
(5.16)

(&
(e
Vs
Yy



where 1, M5 and €4, e, stand for

F+Vi+Ve —(Vh—V3) 0 0
o~ | VeV FHViAV 0 0
L= 0 0 S+Vi+Vy —(Va—=V;) |’
0 0 Vo=Vs F+Vi4V,
S+Vi—=Vy —(Va+Vj3) 0 0
Vot Vs §+VI-V, 0 0
— 17
My 0 0 F+WVi—Vi —(Va+V3) |7 17
0 0 Vo+ Vs  §4+Vi-=V,
E1+E4 —<E2 —Eg) 0 0
| BB Bt B 0 0
e 0 0 E\+E, —(Ey—E;) |’
0 0 EQ—Eg E1+E4
Ey—FEy, —(Ey+ E3) 0 0
. E2+E3 El—E4 0 0
@ 0 0 B —Ey —(BEy+ E3) (5.18)
0 0 FEy + Es Ey—E,

Expressing ¥ = ¢1(e1V) + £2(e2¥) and substituting (5.15) and (5.16) in (5.13), we obtain
from basiswise comparison

9.7{161\1/ = 6161\:[’, (519)

mgffg\lf = 6252\11. (520)

To proceed further, we employ (5.17) and (5.18) to project equation (5.19) and (5.20) in their

explicit forms

(& 4+ Vi + Vi) (¥ + tha) — (Vo = V3) (b2 — ¥3) = (Er + Eq) (1 + Y1) — (B2 — E3) (2 — ¥3),
(5.21)
(8 + Vi + Vi) (¥2 —b3) + (Vo — V3) (1 + ¢a) = (En + Ey)(¢h2 — ¥3) + (B2 — E3)(¥1 + ¢a),
(5.22)
(§+ Vi = Vi) (1 — ¥a) = (Vo + V3) (2 + ¥3) = (E1 — Eq) (b1 — ¥a) — (B2 + E3) (42 + ¥3),
(5.23)
(8 + Vi = Vi) (b2 +1b3) + (Va + V3) (b1 — ) = (E1 — Eq) (2 + tb3) + (B2 + E3)(¥1 — ).
(5.24)
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From equations (5.21) and (5.22) we then obtain

(W ) F VA V) (1 + ) + (Y2 — ¥3)(F + Vi + Vi) (Y2 — t3)

i+ E, = (U + ¢4) (s —05)? , (5.25)
_ (W) F + Vi A+ Vi) (2 — 3) — (P2 — ¥3)(§ + Vi + Vi) (Y1 + ta) N
B fas CEE A Feml)
(5.26)
On the other hand, equations (5.23) and (5.24) give us

o W =)+ V= Vi) (W — ) 4 (e + 03)(§ + Vi = Vi) (42 + 1)
b —E,= (0 ) (U £ 03)? , (5.27)

_ (=)@ + Vi - 4)(% ) = (W V) B+ VI = Vi) (W =)
E2+E3_ ( ) +(2_'_w3>2 (‘/2“"/3)
(5.28)

Solving now equations (5.25)-(5.28) we derive the expressions for F;,i = 1,2, 3, 4 as follows

_ 1 (01 + )T (W1 4+ va) + (o — ¥3)F (W2 — ¢3)
Br= Vil (V1 + 1) + (P2 — 13)?

2
L (V1 — Y1) (1 — Yy) + (Y2 + ¥3)F (V2 + ¥3)
(V1 — Y4)? + (P2 + 13)?

1, (5.29)

1[(% + a)F (2 — b3) — (Y2 — 3)F (Y1 + )
2 (V1 + 14)? + (P2 — 93)?

n (V1 — ) F (2 +1b3) — (o + ¥3)F (V1 — )
(V1 — a)? 4 (2 + 3)?

Ey, = Vo+

], (5.30)

[(?/)1 Va)§ (P2 + ¥3) — (a2 + P3)T (V1 — Y4)
2 (V1 — a)? + (Y2 + 93)?
(W1 + )T (W2 — ¥3) — (o — )T (W1 + tha)
(V1 + a)? + (P2 — 3)?

EgZV‘I‘

] (5.31)

}[(% + V)T (1 + 1) + (o — 13)F (Y2 — t3)
2 (U1 +Ya)? + (Y2 — 3)?
(1 = )T (1 — ) + (Y2 + ¥3)F (P2 + 3)
(V1 — ¥a)® + (2 + ¢3)°

Making an ansatz for ground state wave function v (z):

E4:‘/4+

]. (5.32)

P(x) = ™ = en®eta®e g = g 4ig go = g + i (5.33)
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(5.3) gives for each component

Y =
Py =
Py =
Py =

1 gir i gar i

5 e’" Ccos g1; + €7°" COS g2; ),
1 . .

5(69” sin g1; + €92 sin go;),
—(—e" sin gy; + €97 sin go;),

1
3 (€% cos g1; — €92 cos gai).

The above terms when substituted in (5.29)-(5.32) gives
1 P’ g1 on 8g1
E _ V - _7 r T\2 [
! 1+4[ {aﬁ +(0x1) 8x1 } {

02917“ 991r 2 agli 0? gir aglr
+{ op3 +(8P2) _(0]?2) }_5{ 03 +(0x2)

1 92 g, 0goa, 092 d?g 0gar
+ _[_7 g2 + ( g2 )2 . ( g2 )2 +3 ‘l‘ ( g2 )2 .
4 Opl

Pgor Ogo g2 *gar "
‘I‘{ g2 +(g2)2_(g2)2}_5{ag2 +(ag2)2_

ox? 0x; 0x; 0 %

op3 Op2 Opa 03 Oy

(5.34)

a.glr 2
8p1

- (el
)

e

- (el

Op,

(5.35)

1 1 0%y,

2[ 2 0x2  Oxy Oy 2 op?

) 24,
a927’ 8922}+3{18922

0gar 0g2i }
Op1 Opy

10%gy;  Ogay 0ga; } { 199y
442292 —54=
{ 2 Op3  Opy Opo

+ o[-7

992 0ga;
2 0r3  Oxg Oz

2 2 0x3  Oxy Oy 2 Op?

1 19%g1;  Og1r Ogui 19%g1;  Og1r Ogui
{_ 91+ g1 91}+3{_ 91+ g1 91}
dp1 Op

9g1r 0g1i

10%gy;
+{— 9y

g1, 0g1i _5 1 52911'
2 Op3

Opa Ops

2 92 * Oxy Oxg }] (5.36)

1 18,
By = V3+——7{— -

2 [ 2 0x3  Oxy Oy Op?

0qa, 0Go; 1029
4 g2 92}+3{§ 92+

0gar 0ga; }
Op1 Opr

19%gy;  Ogoy g 19%gy;
Ty 92+ Gor 0g2 _5lz g;
2 Op3 Opa Opo 2 Oxs

0gar 092
81’ 2 83) 2

1 19%g1;  Og1, Ogus 1 8¢y,
2[ 7{2 dx? - dx1 Oxy 9 2 Op}

01, 0g1i }
Op1 Opy
091, 0g1i

19*g1;  Dgi1r Ogui } { 19%gy;
g —5
{2 dps  Opy Opa
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o = e g (G e G- ) o (G« G- G
) o )
R G R v
+ {6;;;; + ((222;)2 - (gﬁif} -5 {5’;5; N (?9?;)2 - (gi")?}]. (5.38)

The above expressions of Fy, Fs, F5, /4 are the central results of our paper. We now turn to their

applications.

6 Applications
6.1 Harmonic oscillator

We first consider the simplest example of the harmonic oscillator whose potential is given by
V(z) = £€*V (x) where
V(x) = ax®>, a>0. (6.1)

Then from (5.1), the V;’s (i = 1,2, 3, 4) emerge as
Vi = a(ai—pl—p3+a3), Va=2a(zipi — z2p2),
Vs = 2a(x1ps — x2p1), Vi = 2a (x129 + p1p2) -

In order to determine the energy and ground state wave functions, we express the real and
imaginary parts of the g;’s (i = 1,2) appearing in (5.33) as combinations of new quantities G;’s

(i=1,2,3,4)
gir = G1 + Gy, gor = G1 — Gy, g1i = Go — (3,92 = Go + G (6.2)

where the G,’s are functions of (z1, p1, pa, T2).

Assuming (5, to be of the form

Gi = a2} — p} — p3 + 23) + B(x1pr — waps) + Y(x1p2 — Top1) + 6(w122 + p1p2)  (6.3)
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where «, 3,7, ¢ are real constants, and utilizing the Cauchy-Riemann conditions

0G, 0Gy 9G,  0Gy G\ 9Gs 9G: 3G,

81’1 8 8p1 82151’ 8])2 N 81’2’ 82152 N 8p2

the function G5 gets restricted to an expression of the type

B

Gy = ——(ﬁ — P% — P% + x%) + 2a(x1pr — xapa) — I(x1p2 — Top1) + Y(T122 + P1p2).

2
Similarly the Cauchy-Riemann relations

0G, _ 0G5 0G, _ 0Gs 0Gy _ 0G5 0G, _ 0Gy

Oxy  Opy Opr  Oxs Opy  Ox1 Ome  Opy

requires (g3 to be in the form

y
Gy = —— (2] — pi — p3 + 23) — 6(v1p1 — Tapa) + 2a(z1ps — Topy) + B(2122 + P1p2).

2
Lastly from Cauchy-Riemann relations

0G1 0G4 0G,  0G, 9Gy 0G4 9G: 9G,
Oz, 8 apl apz’ Ip2 B Op1 " 0y B 0z

(G4 turns out to be

0
Gy = 5@% - P% - P% + x%) - 7($1p1 - $2p2) - 5($1p2 - $2]91) + 20z($1$2 +p1p2).

Referring to (6.2), we solve for g;’s to obtain

)
gr = (a+ 5)(37% —pi —p3+23) + (B — ) (x1p1 — 22p2) — (B — 7)(z1p2 — T2p1)
+(200 4 0) (2122 + p1p2),
)
gor = (= 3)(@T =Pl =3 +23) + (B +7)(@ipr = 22p2) + (B +7)(21p2 — 2p1)

2a — 0) (122 + p1p2),

6.4)

(6.5)

(6.6)

6.7)

(6.8)

(6.9

—(
g = OG0 5~ +ad) + Q0+ D)@ — o) — G+ 0) @i — )
—(8 =) (@122 + p1p2),
g2 = (m)(ﬁ —pi =P+ @) + (20 = 8)(z1p1 — 2ap2) + (200 = 8)(21ps — Tapy)
+(B + ) (@122 + p1p2).

18
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The above solutions enable us to get for the energy values
E, = —-16a, FE; =283, E3=8y, FE,= -8, (6.11)
which are subject to the constraints

4a2—52—72+52:%, 208 + By =0, 2a8 -6 =0, 2av—5=0.(6.12)

The values of the parameters can be distinguished by two types of results

1

Type I : O‘:ii\/g’ =0, v=0, 0=0,

1
Typell: a=0, =0, =0, 5:;&5\/%

signalling the existence of two types of energy values and wave functions. These are summarized

below:
(a) Type I:
E, = ¢4\/§> Ey=FE3=FE;=0. (6.13)
1 1z : 1
b = 56:I:i §(:c%—p%—p%+:c%)[e:t%\/;(mxz-‘rmpz) coS {j:§ %(([jlpl — XT1P2 + P12 — p2$2)}
a 1
_‘_e:F%\/g(m:cz—irmpz) cos {ii\/g(xlpl + x1p2 — P19 — pgl’g)}], (6.14)
1 41 /s z 1
by = ieii §(x§—p§—p§+x§)[e:t%\/g(mxz-i-mm) sin {ii %(xlpl — X1P2 + p1xTo — p2$2)}
a 1
+e¢%\/g(x1“+p1p2) sin {:I:§ \/g(xlpl + T1p2 — P1T2 — p2$2)}]7 (6.15)
1 41 2 (22— p2—p2+22) +3+/ % (z1m24p1p2) 1 ja
ws — 56 1V 2 (@1—P1—pa+T3 [—6 2V 2 Sin :l:§ 5(1’1]91 — T1P2 + P1ZT2 — p2x2)
a 1
feFaV/s@meatep) gy {:I:§ \/g(xlpl + T1p2 — P1¥2 — p2332)}]7 (6.16)
1 41 /m z 1
w4 _ §€:I:% 5(m%—p%—p§+m§)[e:t%\/;(wlm-l—plm) Cos {j:§ g(([;lpl — XT1P2 + P12 — p2$2)}
Z 1
_eF3V/3@mpipe) (0 {:I:§ \/g(l’lpl + ZT1p2 — p1T2 — pz@)}]- (6.17)
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and (b) Type II:

Ey=FE,=E;=0, E;= :F4\/g- (6.18)
1 ; z 1
W = §€j:% 5(m1m2+:01:02)[eﬂ:%\/;(w%—P%—Pgﬂﬂg) Cos {j:§ %(gjlpl — XT1P2 + p1xg — p2$2)}
1 fag2 2 2 1 /a
+eﬂ\/;( P-PE=p3He3) (g {:F§ §($1p1 + T1p2 — P12 — pz@)}]v (6.19)
1 g g 1
Wy = §€i%\/g(:c1:cz+p1p2)[6i%\/;(x%—p¥—17§+:c§) sin {:}35 g(:plpl — TP + p1To — pzl'z)}
1 [T (22 p2 a2 . 1 /a
peFrVE@Ei-ri-rited) g {:F§ 5(931291 +Z1p2 — P12 — P2952)}]’ (6.20)

2 2

1 a 1
+e¢1\/;(x%_p%_p%+x%) sin {:F§ \/g(xlpl + ZT1p2 — 122 — P2$2)}]= (6.21)

Yy = 1ei%\/g(””ﬂ?wlm)[—(ijti 2 (@i-pi-pi+ed) i {:l:l\/g(m]h — T1p2 + P1%2 — p2$2)}

1 a a 1 Ja
Yy = §ei%\/g(m”ﬁmm)[6%\/;(””%_7"%_1’3”%) Cos {i§ \/;(mpl — T1p2 + P12 — p2:)§2)}

1 [T (22 20 1 /a
_6$411\/;( % 1’7% p§+ %) CcoS {3135\/;(1'1291 —+ T1Pa — P12 — pQZL'Q)}] (622)

Several remarks are in order:

Substituting (6.13) into the last relation of (3.11) we encounter a real energy spectrum for

Type I wave function

Bt [l (6.23)

However, from (6.18) we are led to a hyperbolic type of energy values for the Type II wave

- 1 -
E= :pzu'\/gg?. (6.24)

Other aspects of our results are as follows:

functions

20



Let us focus on Type I solutions for which there is a real energy spectrum.

e It is easy to see that, under P77, f/(:c) obeys

P, (V%) =P, (%aﬁxz) = 11—6a£2x2 =V(x), [HPT]=0.

Following (6.14)-(6.17) since PT;1)(x) = (x), it is evident that PT;-symmetry of H is

unbroken.

e Further from invariance of V() and v (z) under PT; i..
P75 (V) = Vx), PTg: 0(x) = 0(x)  [H,PT;] =0

it follows that PT;-symmetry of H is unbroken too.
A different scenario emerges for Type II solutions:

e While
PT, (f/(x)) o7 (Laen) = e —Vx), [H,9T) =0
1 1 16 16 ) Y (2
1 (x) does not show the same feature:

PTip(x) # Ap(x)

for any scalar A\. Hence we conclude that PTJ;-symmetry of H is broken.

e Turning to the PT ; operator the situation is slightly different. We have
7 (V) =V(x), [H,PT;] =0

T, B(x) = ()

it follows that PJ;-symmetry of H is unbroken.
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6.2

Inverted (Parabolic) oscillator

For the problem of inverted (parabolic) oscillator acting upon the potential V= 1—165 2V where

V(x) = —bx*, b>0 (6.25)

the results for both the classes of solutions reveal the existence of only imaginary energy eigen-

values:

Y1 =

Yo =

Y3 =

Yy =

(a) Typel:

.~ b - 1. /b
E=44iy/ - E=F-11/=% :
Z\/; ]F4Z\/g€ (626)

1 /b 1 /b
[6i%\/g(_“m”lm_m“m“) coS {j:Z \/;(ﬁ —pi—p;+a3) 5\/;(:)31@ +p1p2)}

1 /b 1 /b
eIV B piapane) o {¢Z \/;(95% —pi—pytay) 5\/;(5”1:)52 + pipa) }],
(6.27)

1 /b 1 /b
5[6 2V 3 (Captap e tpan) gy {:EZ \/;(x% —pi—py )+ 5\/;(1511’2 +p1p2)}

1 /b 1 /b
etV s i) gy {ﬁ\@(ﬁ — Pl —ph+3) & 5\@(:61:52 +p1p2)}],
(6.28)

\/2(171932 +P1P2)}

(w122 +plpz)}]7
(6.29)

\/; (2122 + p1po }
\/; (z122 + P1D2 }]

(6.30)

N —

—_

N —

4

1 /b 1
_|_ei%\/g(x1p1+:c1p2—p1:c2—pzx2) sin {:F—\/;(l'% _ p% _ pg + :l?%) + 5

%[_615\@( T1p1+T1p2—p1T2+p2ra) sin {il\/g(x% — p% — p% + l’%) +

| o

4

—_
l\DI}—t

5[6 2V 3 (mphEIp2 P12 tpaT2) (o {:ti\/g(ﬁ — pi — p5 + a3)

+5 Q(I1p1+mlpz—p1x2—p2x2) 1\/3 9 9 9
—ezve cos{ F-1/ = (22 — p? — p2 + 22)
{:F4 2( 1 pl p2 2

l\DI}—t
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(b) Typell:
b - 1. /b
E=2diy/ - E=F—i/=¢%
Z\[2 ;41\[2§
1 1 b
U = §[ei2 5 (w1p1—z1p2+P1T2—P2T2 COS{:FZ 5
+e 2\/§x1p1+x1p2 —p1T2—p22) CcoS :Fl é
4 2
1 1 b
¢2 — §[e:l:é\/_961p1 T1p2+P1T2—P2r2 Sln{:FZ 5
te 2\/_Jﬂlpl-‘rﬂﬂlm —p1T2—P2T2) sin :Fl é
4 2
1 il\/f( 1\/3
—  I[_p*r3V3@pi—zip2tpiza—paa2) 4/ =
_i_ei%\/g(:upﬁmpz —P1T2—p2@2) ¢ip :Fl é( —p?
4V 2 '
by = 5[ejzz\/_( 1P1—T1p2+P122—P2 Q)COS{:FZ 5( %_pl
_e:l:g\/_(mlpl'f‘-TlPZ P1T2—P2T2) coS :F}\/E( p
4V 2 '

Corresponding to the above results we find for &;

e For the PT; operator

PT,V (x) = V(x),

(6.31)

1 /b
Pz + 952) F - 5 5@11'2 + p1p2)
1 /b
—ps+a3) = 5 5(:61:62 + pip2) o],

(6.32)

1 /b

—p3+a3) F 2\/;(%@ +p1p2)}
1 /b

—ps+a3) £ 2\/;(931@ +p1P2)}],

(6.33)

1 /b
(x f—p% —p§+x§) F 5\/;(1'1@ +p1p2)}

1 /b
p% + x%) =+ 5\/;(561@ +p1p2)}]7

(6.34)

1 /b
i —Pg + 953) F 5\/;@11'2 +P1P2)}

1 /b
—ps+a3) £ 5\/;@11'2 +P1P2)}]-

(6.35)

= &, the broken character of PJ to hold

where PT;1)(x) # \i)(x) for any scalar A and so PT;-symmetry of H is broken.
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e For the PT; operator

PTV(x)=V(x), [H,PT:=0

K23

where PT :1)(x) # AMp(x) for any scalar A and so PT ;-symmetry of H is broken.

6.3 Isotonic oscillator

We now address the problem of isotonic oscillator which is governed by the potential V= %5 2y
where

V(x) = ax? + Xﬁ a( 0), b( 0). (636)

27

From (5.1) we then obtain

Vi = a(2?—p}—ps+a3) +g l{((;l i;z));;((ppll_— 5;2))22}2 {((;11_—;22))22;((]93911 i ;;2))22}2}
V= 20 e | R
V= 2l e+ | )
R R 1 (= e ey i e e

By inspection of the terms V7, V5, V3, V, that we consider the following ansatz for G

Gi = ai(73 —pi —p3+a3) + aa(T1pr — Tapa) + az(T1pe — Top1) + au(T122 + P1p2)
I A LT — X
+ Bitan™( . 2) + B2 tan 1(¥) + B3 log{(z1 + 22)* + (p1 — p2)*}
- p1+ D2
+ Balog{(z1 — 22)* + (p1 + p2)*} (6.37)

for real constants o, 5; : 2 = 1,2, 3, 4.
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Then proceeding in the same way as followed in the case of the harmonic oscillator we find

Go

Gy

(6%
—72(95% - P% - Pg + 933) + 201 (T1p1 — Tap2) — au(T1pe — Tap1) + a3(T122 + P1p2)
1t 4,1 15}
26y tan ™ (C—%) = 2By tan ™! (S + - log{ (w1 + 22)° 4 (pr — p2)”)
I 2 2
By log{(z1 — 22)" + (p1 + p2)°}, (6.38)
_%( 2 2 2 2y _ 9 _
9 xy — p] — Py + 15) — ag(T1p1 — xap2) + 201 (1pe — xap1) + az(x129 + P1P2)
1+ X1 — X
235 tan l(pi _pj) — 203, tan l(pi +p22) - %log{(ml +2)% + (p1 — p2)?}
B
5 log{(wn — 22)* + (1 + p2)*}. (6:39)
a
?4(55% — pl — P34+ x3) — as(z1pr — Tap2) — aa(T1p2 — Tap1) + 201 (2122 + P1p2)
T+ T, — X
Bitan™ (———) — By tan ! (———2) + B3 log{ (1 + z2)* + (p1 — p2)°}
P1— D2 p1+ P2

Balog{(z1 — 2)* + (p1 + p2)*}. (6.40)
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These expressions for G;’s (i = 1,2, 3,4) yield

gir

914

9or

92i

+

_|_

a
(oq + ?4)(553 —p] —p5 +23) + (g — a3) (7191 — Tapa — T1Pg + Tap1)

i1+
(2a1 + ay)(z122 + P1p2) + 251 tan 1( ! 2)
P1— P2
205 log{(z1 + 22)* + (p1 — p2)*}, (6.41)
1
—5(042 — o) (2} — pi — ps + x3) + (201 + au)(21p1 — Tops — T1P2 + T2p1)
1+
(a2 — a3) (w129 + p1pe) — 483 tan ™' ( - 2)
P11 — P2
Bilog{(z1 + z2)* + (p1 — p2)*}, (6.42)
«
(o — ?4)@% —pf —pg + 553) + (oo + a3)(x1p1 — Tapa + T1p2 — T2p1)
—x
(200 — ag) (2122 + p1p2) + 252 taﬂ_l(xl 2
p1+ D2
284 1og{(z1 — z2)* + (p1 + p2)*}, (6.43)
1
—5(042 + a3) (2] — pi — pi + 23) + (200 — o) (1p1 — Tapa + T1p2 — T2p1)
1,21 — T2
s + as)(x129 + — 48, tan"!
( 2 3)( 1T2 Plpz) Ba (pl ¥ p2
Balog{(x1 — 22)* + (p1 + p2)*}- (6.44)

Substituting ing the above solutions in (5.35)-(5.38) we get

ay = a3 =0 (6.45)
402 + o = % aray =0 (6.46)
Ey = —4[(1+ 885) (20 + ) + (1 + 884) (201 — ay))] (6.47)
Ey = —1661 (201 + o) — 163220 — auy) (6.48)
Es = 1661 (201 4 ay) — 1662(20; — ay) (6.49)
Ey = —4[(1+865) (201 + ay) — (1 +884) (201 — ay)] (6.50)
AB3 — 7 — By = 4B — B3 — Bu=b (6.51)
B1(88s — 1) = o881 — 1) =0 (6.52)
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A plausible set of viable solutions for the real parameters o, 3; : ¢ = 1,2, 3,4 is given by

fr=p03=0, = FE,=F=0 (6.53)
1+ /1+2

By = —5 (6.54)
1+ /1+2

Ba = —5 (6.55)

for the following restrictions on the real coupling constants a and b of the isotonic oscillator
potential:

a>0and b > —2. (6.56)

We thus have two types of solutions for the parameters:

Va
Typel: o =t——, awm=az3=aq,=[0 = =0,
yp 1 NG 2 3 1= B = [

ﬁ
22’

Consequently two types of energy values and energy eigenfunctions emerge. These are given

Typell: oay=+ = =az= [ =P =0

as follows:

(a)Type I:  The results are

- 1
By = —16a1[1 +4(Bs+ f4)], Es=0=E= 1_6€2E1

Y = 1eal(w%—p%—p§+w§)+2a1(w1r2+p1p2)+26310g{($1+m2)2+(p1—p2)2}

2

1,21+ X2
.cos{ 20 (z1p1 — Taps — T1P2 + Tap1) — 43 tan " (

P1— P2

+ 1 1 (22 —p2?—p3+22)—2a1 (z122+p1p2) +2B4 log{(z1—z2)% +(p1+p2)?}

2
.cos{2ay (m1p1 — Topy + T1pa — Top1) — 4B tan T (

)}

T — X2
P1+ P2

)}
(6.57)
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(2

¥

Y4

e (22 —p? —p3+22)+2a1 (z122+p1p2) +283 log{(z1+72)%+(p1—p2)?}

. _1,T1 + X2
-sin{2a (71p1 — Tapa — T1pa + Tap1) — 435 tan”(
D1 — D2
1

+_€a1(r§—p§—p§+m§)—2a1(:v1:v2+p1p2)+254 log{(z1—z2)2+(p1+p2)?}
Ty — Tg
p1+ P2

-sin{2aq (x1p1 — Xope + T1p2 — Tap1) — 4064 taﬂ_l(

1
——e

2

) _1,T1+ 22
-sin{2a (z1p1 — Tops — 212 + ap1) — 4P tan ™ (
P1— P2
1

4 (22 —p? —p3+22)—201 (z1724+p1p2)+2B4 log{(z1—x2)%+(p1+p2)?}

a1 (2} —p? —p3+a3)+2a1 (z122+p1p2)+285 log{(z1+22)* +(p1—p2)?}

Tr1 — X2
P+ P2

-sin{2a (x1p1 — Zops + T1p2 — Tap1) — 4Bs tan™(

1
—e

2
.cos{2a (x1p1 — Taps — T1P2 + Xap1) — 405 taﬂ_l(

1
——e
2

a1 (22 —p?—pi+a3)+201 (z122+p1p2)+283 log{(z1+22) 2 +(p1—p2)?}

T, + Zo
P1— P2

o1 (22 —p2 —p2+33)—201 (w152 +p1p2) +2B4 log{ (x1—32) 2 +(p1+p2)?}

X1 — T2

p1+ D2

.cos{2ay (m1p1 — Topy + T1pe — Top1) — 4B tan ™ (

)}

(6.58)

(6.59)

(6.60)

For the extended PT-symmetry for Type I solutions along with 53 = /3, we therefore find the

typical unbroken character of P7 :

PTV(x) =V(x), [H,PT;]=0

where PT;1(x) = ¢(x) and so PT;-symmetry of H is unbroken.

PTV(x)=V(x), [H,PT:=0

K22
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where PT 1)(x) = 1)(x) so that PT;-symmetry of H is unbroken.

However even if 33 # (3, the unbroken character of PT; does not change. But the scenario is
different for PT; and PT; operators as both of them are broken for 33 # f3,.
(b) Type II: ~ The results are

~ 1 .
Ey =0, E;=-8a[l+4(B3+b1)]=FE = 1—6z¢g2E4

L oy (22 —p? —p32+22)+au(z122+P1P2)+263 log{(z1+22) %+ (p1—p2)?}

’{7D1 — 56 2
_1,%1+ X2
.cos{ay(z1p1 — Tapa — T1p2 + xap1) — 4P5 tan l(p P }
1— P2
—l—le— %4 (23 —p—p3+a3)+aa(ziz2+p1p2)+284 log{(z1 —z2) 2 +(p1+p2)?}
2
1,21 — X2
-cos{—ay(z1p1 — Tapy + T1py — apy) — 4Bs tan(
P1 + P2
(6.61)
Wy = 16%(x%—p%—p%-i—:c%)+a4(x1x2+p1pz)+2ﬁ310g{(x1+x2)2+(p1—p2)2}
2
. 1,1 + 22
-sin{ou(x1p1 — apy — 1Py + Top1) — 4P5 tan (p »
1— P2
—l—%e_ %4 (22 —p?—p2+ad)+as(z1za+p1p2)+284 log{(z1—x2)2+(p1+p2)? }
. 1,21 — X2
-sin{—au(z1p1 — Taps + 212 — Tap1) — 4B tan ™ (
DP1+ D2
(6.62)
- _%ea—z‘l(rf—pf—p§+m§)+a4(w1m2+p1p2)+25310g{($1+m2)2+(p1—p2)2}
. 1,21 + T
sin{ou(x1p1 — Taps — T1p2 + Top1) — 4P5 tan (p D )}
1 — P2
+%6— % (22 —p}—pd+ad)+as(z1za+p1p2)+284 log{(z1—x2)%+(p1+p2)? }
. 1,21 — X2
-sin{—au(21p1 — Tapa + T1p2 — Lop1) — 4B tan”( )}
p1+ P2
(6.63)
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vy = 16%4(x%—pf—p§+x§)+a4(x1x2+p1p2)+25310g{($1+x2)2+(p1—p2)2}

2
-cos{ay(z1p; — Topy — T1pa + Tap1) — 4Bz tan”(
1 o

2
.cos{—ay(m1p; — Tapa + T1p2 — Tap1) — 484 tan(

Z’1+$2
P1— P2

(22 —p3—p3+x3)+au(z1224+p1p2)+2B84 log{(x1—x2)%+(p1+p2)?}

)}

T — T2
P1+ P2

(6.64)

Hence for Type II solutions our conclusions are that whatever the values of 3 and 4, the

PT-symmetry works in a different way:

PTV(x) =V(x), [H,PT;]=0

where PT;1)(x) # \i)(x) for any scalar A and so PT;-symmetry of H is broken.

PTV(x)=V(x), [H,PT:=0

K24

and PT ;¢ (x) = ¢(x) it follows that PT ;-symmetry of H is unbroken.

Finally in this problem of isotonic oscillator, extension of the real coupling constant b to its
bicomplex counterpart, reveals an interesting feature. To fit into our formalism the restrictions
bp = by = 0and | by |< (24 b1),by > —2 were required to be imposed upon the coupling
constants. If by # 0, a, = 0, although the ground state energy F is real and PT;V (x) = V(x)
along with [H,PT;] = 0,the PT;-symmetry is broken since PT,;1)(x) # Ai(x) for any scalar
A. But the scenario is completely different for the PT; operator: as PT:V(x) = V(x) and
[H,PT;] = 0as well as PT;1)(x) = ¢(x), the PT;-symmetry remains unbroken.
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7 Summary

To summarize we took up in this paper a quantitative analysis of bicomplex algebra that leads to
associated Hamiltonians couched in an analogous version of the Schrodinger equation. Bicom-
plex numbers being basically four dimensional hypercomplex numbers can admit of different
types of conjugation each defining a separate class of the time reversal operator. As a result we
could set up different extensions of parity (P)-time (7)-symmetric models such as the ones cor-
responding to PT;, PT; and PT; operators in an extended phase space formalism. However, as
we have explicitly demonstrated, PT; is not a valid candidate for a PT-symmetric operator. By
writing down suitable representations and exploiting the Cauchy-Riemann conditions judiciously
we showed that we could arrive at the closed-form expressions of the energy and wave function
components for a given choice of the potential. Our procedure was then applied to the problems
of harmonic oscillator, inverted oscillator and isotonic oscillator. In all such systems we obtained
two types of solutions each revealing specific PT properties. In particular we observed that a
real energy value exists for all the three cases when the Hamiltonian H obeys unbroken P7J; and

PT ;-symmetries.
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Appendix-A

Bicomplex valued functions:
Any bicomplex function f : 2 C T — T involving unique idempotent decomposition into two

complex valued functions reads

f(w) = fl(wl)el + fg((ﬂg)eg, w = (wlel + CUgeQ) €N (71)
where w; € Ql,OJQ € (g and Q = Qe + 6.
The derivative of f at a point wy € € is defined by

F(wo) = limf(wo +h) — f(wo)

h—0 h

provided that the limit exists and the domain €2 is so chosen that A is non-singular in it. If
the bicomplex derivative of f exists at each point of its domain ) then f will be a bicomplex
holomorphic function in €.

Below we list some useful results of different bicomplex valued functions defined on the

domain €2 for w = wie; + woey, w = wie + weey € (1

(1)  Ww"=wle; +wies,
(17) e¥ =e“le; + ey,
(iii

COS W = COSwWj€] + COoS Wwaksy,

)
(tv)  sinw = sinwqe; + sinwses,
)

w w1 W9 . .
(v) — = —e; + —ey; w isnon singular,
w w1 w9
(Vi) w.w = wiwie; + Watvses,
(U’ii) / f(w)dw = fl (wl)el + fg(Wz)eg,
Q 0 Qo

. d d d
(viii) %f(w) = d—u)lfl(WI)el + d—w2f2(W2)e2-
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Appendix-B

Cauchy-Riemann Matrix representation:
If w = xy + 129 +ix3+ 1024 is an element of T in a four-component form we can define a function

Non T as follows:
r1 —To —IT3 Ty
Nw)=| 2 1 —H 7% (1.2)

T3 —Tg T1 —X2
Ty X3 T2 €

which is a real Cauchy-Riemann matrix. The set of Cauchy-Riemann matrices with the operations

of usual matrix addition and multiplication equipped with the norm /3 + 22 + 22 + 22 is a
Banach algebra and is isomorphic and isometric to the bicomplex algebra T. Cauchy-Riemann

matrices corresponding to the idempotent units e;, e, are

RN
€1 = 2, 2 , €2 = ? 2 (7.3)
0 5 2o o L1
3 00 3 -3 00 3
The unique decomposition of w in its idempotent representation
w = [(1’1 + 1'4) + ’i(l’g — 1’3)] e + [(1'1 — 1’4) + i(l’g + 1’3)] €, (74)
provides the unique decomposition of the corresponding Cauchy-Riemann matrix namely,
N(CU) = €1N [(ZL’l + 1’4) + Z(l’g — 1'3)] + EQN [(1’1 — 1'4) + Z(ZL’Q + 1’3)] (75)
Thus we have the forms
(l’l + 1’4) —(1’2 - l’g) 0 0
. . o (1’2 — 1’3) (1'1 + 1’4) 0 0
N [(l’l + 1’4) + ’L(Z’g l’g)] = 0 0 (1'1 + 1'4) _(x2 _ 1’3) (76)
0 0 (1’2 — 1’3) (1’1 + 1'4)
and
(1’1 — 1’4) —(1'2 + 1’3) 0 0
. . o (1’2 + 1'3) (1’1 — 1’4) 0 0
N [(l’l JJ4) + Z(JJQ + 1’3)] = 0 0 (l’1 . $4) —(1’2 + 1’3) (77)
0 0 (1’2 + l’g) (l’l — 1’4)
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