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Abstract

We present a realistic theoretical treatment of a three-level Λ system in a hot atomic vapor

interacting with a coupling and a probe field of arbitrary strengths, leading to electromagnetically-

induced transparency and slow light under the two-photon resonance condition. We take into

account all the relevant decoherence processes including collisions. Velocity-changing collisions

(VCCs) are modeled in the strong collision limit effectively, which helps in achieving optical pump-

ing by the coupling beam across the entire Doppler profile. The steady-state expressions for the

atomic density-matrix elements are numerically evaluated to yield the experimentally measured

response characteristics. The predictions, taking into account a dynamic rate of influx of atoms in

the two lower levels of the Λ, are in excellent agreement with the reported experimental results for

4He*. The role played by the VCC parameter is seen to be distinct from that by the transit time

or Raman coherence decay rate.

PACS numbers: 42.50.Gy, 42.25.Bs, 42.50.Nn
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I. INTRODUCTION

Electromagnetically-induced transparency (EIT) in three-level Λ-systems is a phe-

nomenon in which an initially absorbing medium is rendered transparent to a resonant weak

probe laser when a strong coupling laser is applied to a second transition [1]. It is based on

quantum interference effects involving coherence between the two lower states of the Λ. The

quest has been on for simple room-temperature systems capable of demonstrating EIT for

applications ranging from narrow transparencies to switchable and controlled broadband de-

lays, and slowing of light [2] for use in quantum-information processing. Room-temperature

atomic vapors have been found to be attractive candidates for such applications, necessi-

tating a treatment of the phenomenon taking into account effects of atomic motion and

collisions.

There are some early studies [3] of Doppler-broadening effects in EIT for a system of

moving atoms. In the limit of vanishing probe field and under the assumption that all atoms

are trapped in the dark state (which is a coherent superposition of the two lower levels of the

Λ), it was found that power-broadening of the EIT linewidth takes place: ΓEIT = Ω2
C/4WD

(where ΩC is the Rabi frequency of the coupling field and WD is the Doppler half-width at

half-maximum), which is similar to the well-known result for a homogeneously-broadened

system: ΓEIT = Ω2
C/4Γ0 (where Γ0 is the homogeneous linewidth). This dependence was

experimentally verified in Ref. [2]. In the limit of relatively low probe field intensity, ΩP ≪
(Γ0/WD)ΩC, and under the same assumption of full coherent trapping (i.e., neglecting the

two-photon coherence decay), other workers [4] have derived the following result for the EIT

linewidth: ΓEIT = ΩPΩC/4Γ0, where ΩP is the Rabi frequency of the probe field.

For EIT in a room-temperature gas, the decay of two-photon (Raman) coherence is caused

by several mechanisms, such as transit-time broadening, population exchange, and atom-

atom and atom-wall collisions. Insight into the most significant decoherence mechanism can

be gained by measuring the width of the EIT resonance as a function of the coupling field

intensity. An existing theoretical treatment of EIT in Doppler-broadened gases [5], assuming

the population exchange between the lower levels to be the main source of decoherence,

predicts a nonlinear dependence of the EIT width ΓEIT on the coupling beam intensity for

weak coupling powers. In the limit of very large coupling intensity, it is shown to reduce

to the power-broadening case. Javan et al. [5] consider a closed atomic model scheme and
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argue that such a model gives a description almost equivalent to the one for an open system

in which atoms decay (out of the interaction region) with the rate ΓR, and atoms come into

the interaction region with equally populated lower levels. Though it is a theory for EIT in

a Doppler-broadened medium, the role of collisions is completely neglected in Ref. [5].

Most existing experiments in atomic vapors [6, 7, 8] have shown the dependence of the

width of the EIT resonance on the coupling field intensity (∝ Ω2
C) to be linear, even for weak

coupling powers (with the exception of the work by Ye and Zibrov [9] which was performed

without a buffer gas and with a very small beam diameter). As an example, we focus on the

data of our recent demonstration [8] that metastable 4He (He*) at room temperature is a

simple system capable of yielding EIT and slow light. For the coupling field strengths used,

ΓEIT is expected to evolve linearly with ΩC according to Ref. [5], with a slope depending

on ΓR. The lower-level relaxation in a gas is mainly determined by the transit time of the

atoms through the laser beam – different beam sizes would lead to different transit times and

hence different values of ΓR. Our experimental results [8] have clearly shown that (i) ΓEIT

evolves quadratically with ΩC, and (ii) the slope of this evolution is the same for different

beam sizes, i.e., for different values of ΓR. The suggestive role played by collisions between

metastable and ground-state atoms in yielding this experimental result is not described by

the theory of Ref. [5].

If all the atoms across the entire Doppler profile are assumed to be initially optically

pumped by the coupling beam to the probe ground level, a calculation [7] of the response

of the medium up to first order in the probe field leads to a linear dependence of the EIT

linewidth on the coupling beam intensity [10]. To obtain this result, one also supposes that

the decoherence in the lower states is caused by pure dephasing, contrary to the assumptions

of population exchange in Ref. [5]. In a realistic situation, the special initial condition of the

entire atomic population being in the probe ground level does not hold good – the population

is equally likely to be in the probe and the coupling ground levels initially. Thus, population

exchange between the two lower levels cannot be ignored. Also, a treatment in first (linear)

order in the probe field cannot possibly give results when the coupling field is small, viz. of

the order of the probe field.

In this paper, we address this deficiency in the existing theory of EIT and slow light in

a hot atomic vapor, and attempt a complete, realistic analysis taking into account all the

relevant decoherence processes, for arbitrary strengths of the probe and the coupling fields,
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and without assumptions of any special initial condition. We consider the influx of fresh

atoms in the lower levels and the outflux from all the levels at a diffusive transit rate in

the gas. We allow for unequal rates of influx in the lower levels to take into account optical

pumping by the control field and return of coherently-prepared atoms into the interaction

region. The phase-interrupting and velocity-changing collisions (VCCs) of active atoms are

also modeled effectively.

Apart from the transparency width discussed so far, there are other features of inter-

est associated with EIT. For non-zero detunings of the coupling field from the center of the

Doppler-broadened transition frequency, the transmitted intensity profiles become asymmet-

ric about the two-photon resonance (Raman detuning = 0) [11, 12]. This Fano-like feature

is a signature of the two-photon process of EIT, and emerges naturally from our model. The

narrow spectral hole in the absorption profile of the EIT medium is accompanied by a strong

dispersion of the index of refraction according to the Kramers-Kronig relations, inducing a

low group velocity. The evolutions of the peak transmission and the group delay with the

coupling beam intensity predicted from our analysis faithfully reproduce the experimentally

observed behaviors.

The paper is organized as follows. In Sec. II, all the different relaxation processes for

EIT in a three-level Λ-system are discussed. The fraction of atoms that come back to the

beam from outside being still coherently-prepared are suitably modeled in this section. In

Sec. III, VCCs are dealt with separately, and the density matrix equations are written with

various relaxations including that due to VCCs. The steady-state solutions for the density

matrix elements are presented in the strong-collision approximation with a model for the

VCCs under rapid VCC coverage. This is followed by our theoretical results in Sec. IV

on the Doppler-averaged Fano-like EIT profiles, the variation of the EIT width, the peak

transmission and the group delay with the coupling intensity, all of which agree very well

with the experimental data for the He* system. The general dependence of these features on

the VCC parameter, the unequal atomic influx parameter, the Raman decoherence rate and

the initial transmission are also probed. It is shown that the unequal feeding back of atoms

into the lower levels, more being in the coherently-prepared dark state |b〉, has an important

effect on various characteristics of an EIT medium. It is also shown that the impact of

VCCs is distinct and cannot be incorporated by simply modifying the transit time decay

(and hence the Raman coherence relaxation) rate. The conclusions are presented in Sec.V.
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II. EIT SCHEME WITH RELAXATION PROCESSES

A. Level scheme for EIT

Consider a Λ atomic system as in Fig. 1. Levels |a〉 and |b〉 are coupled by a weak probe

field, the interaction energy being given by its Rabi frequency ΩP. Another strong coupling

field of Rabi frequency ΩC couples the same excited level |a〉 with level |c〉 along the other

arm of the Λ. Both fields are treated classically. The probe detuning is

∆P = ωP − ωab,

with ωP as the probe frequency, and likewise, the coupling field detuning is

∆C = ωC − ωac,

with ωC as the coupling frequency. The Raman detuning is

δR = ∆P −∆C = ωP − ωC − (ωab − ωac).

The probe and the coupling fields propagate in the same direction, and the frequency differ-

ence |ωab −ωac| is small enough so that the residual Doppler shift |kP − kC|v can be ignored

[13]. For EIT, the system should be prepared by optical pumping so that the initial popu-

lation is entirely concentrated in the dark state |b〉. The coupling field creates a quantum

interference between the probability amplitudes of transition |b〉 → |a〉 via two different

channels, (i) a direct absorption process from |b〉 to |a〉, and (ii) an indirect stimulated Ra-

man process from |b〉 to |a〉 to |c〉 to |a〉. Under the appropriate condition of two-photon

resonance δR = 0, the medium becomes effectively transparent (zero absorption) for the

probe field, leading to EIT.

In the example of 4He, the first excited state 23S1 is a metastable state with a lifetime

of approximately 8000 s. The transition between 23S1 and the second excited state 23P at

a gap of 277 THz or 1083 nm is conveniently used. The levels 23S1 and 23P1 are each split

into three sublevels with mJ = −1, 0 and 1. Out of these six levels, a Λ system is carved

out by optical pumping (with the help of proper choice of polarization of light, selection rule

and allowed stimulated/spontaneous transitions) [14], with mJ = −1 and 1 of 23S1 forming

the two lower levels, and mJ = 0 of 23P1 the upper level. At zero magnetic field the lower

levels are degenerate and ωab = ωac.
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FIG. 1: Three-level Λ scheme for EIT

B. Relaxation processes

The dispersion and absorption of the medium with respect to the probe field of Rabi

frequency ΩP are determined by the off-diagonal element ρab of the atomic density matrix.

This describes the atomic coherence or the atomic polarization. Hence, it is important to

investigate the different relaxation processes affecting the optical coherence as well as the

Raman coherence of the two lower levels that lead to the dark state and EIT. It is known that

collisions of active atoms, which only perturb the phase or amplitude of an oscillating atom

without changing its velocity, lead to homogeneous line-broadening and a shift of its line

center. But collisions can also result in changes in the velocity of active atoms, in addition

to being phase-interrupting, and affect atomic coherences of the system under consideration

[15].

The present theoretical analysis examines the density matrix equations for a three-level

Λ-system interacting with two fields, in the presence of the following different sources of

relaxation:

1. the spontaneous decay from the excited state |a〉 transfers atoms to the ground states

with equal decay rates Γ0/2,

2. the transit of the atoms through the laser beam at a rate Γt replaces atoms (in all

states) in the laser interaction region by fresh atoms arriving (only in the lower states)

from the volume outside that region. The transit rate depends on the pressure (dif-

fusion coefficient) of the gas. All the populations and coherences are affected because

of this motion. But it is the lower-state relaxation that is mainly determined by the
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transit rate Γt,

3. the collisions (phase-interrupting) damp the atomic polarizations and coherences,

4. the collisions also change velocities of the active atoms without changing their internal

state.

In our example of the He* system, the atom-wall collisions are not very significant for

the dynamics. De-excitation of He* on collision with cell walls leaves inert He atoms in the

ground state (11S0), which cannot be detected: there are no background atoms to contribute

to noise, unlike experiments which use true ground-state atoms such as the alkali metals.

Thus, with our system, there is an advantage of collisions of the active atoms with the walls

of the cell which result in quenching.

The decay for the optical coherences is:

Γ

2
=

Γ0

2
+

Γcoll

2
+ Γt, (1)

where Γcoll is the collisional dephasing due to pressure, and the Raman coherence decay for

ρ̃cb(v) is:

ΓR = Γt + Γp
coh + ΓB, (2)

where Γp
coh is the collisional term proportional to gas pressure, and ΓB is the dephasing due

to inhomogeneity in residual magnetic field and other possible dephasing mechanisms.

The mean free-path of the He* atoms is, in a hard sphere model, of the order of 0.1 mm.

If we consider that the atoms cross the beam in a one-dimensional random walk, we can see

that, at 300 K, they experience about 104 collisions during their trip across a 1-cm-diameter

beam, leading to a diffusive transit time Γ−1
t of the order of 0.5 ms. According to a rigorous

calculation by Fitzsimmons [16], the diffusion constant at 1 Torr and 300 K is D = 500

cm2/s. Thus, in a 1-D diffusion model, the variance in the displacement is (∆x)2 = 2Dt.

For ∆x = 1 cm, we again obtain the transit time, t = 1 ms. For metastable helium at room

temperature and pressure of 1 Torr inside a cylinder shielded with µ-metal to avoid stray

magnetic fields, the various decay rates are typically:

Γ0 = 107 s−1,

Γcoll = 1.33× 108 s−1,

Γt ∼ 103 s−1,
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ΓR = 104 − 105 s−1.

The coherences between the lower levels may benefit from the fact that the atoms can

diffuse out of the interaction region and return before decohering. The rates at which the

atoms return to the lower states |b〉 and |c〉 are not likely to be equal, since inside the beam,

the populations in these two states are made unequal by the control-field optical pumping

from |c〉 to |b〉, and hence the population diffusing outside is also likely to be unbalanced.

The rate of return from outside cannot be a constant but would depend dynamically on the

population difference, (ρbb−ρcc). This feature is incorporated by using unequal influx rates:

dρbb
dt

∣

∣

∣

∣

∣

in

=
Γt

2
[1 + β (ρbb − ρcc)] ,

dρcc
dt

∣

∣

∣

∣

∣

in

=
Γt

2
[1− β (ρbb − ρcc)] ,

while maintaining a single departure rate of Γt from the beam in all the states. A value of

β = 1 would indicate that all atoms going back to the beam are prepared for EIT in the

dark state |b〉. On the other hand, β = 0 would indicate that equal number of atoms enter

the beam in states |b〉 and |c〉. The overall atomic population is, of course, conserved. A

physical picture of β can be thought as arising from the treatment of the atomic motion

outside the laser beam in a diffusion equation, by assuming a random distribution of the

durations spent by the atoms outside the interaction region [17].

III. ATOMIC DENSITY MATRIX FORMULATION

A. Velocity-changing collisions

Velocity-changing collisions (VCCs) which shuffle atoms between different velocity classes

represent an important source of relaxation for the lower states. It can modify the atomic

velocity without affecting the atomic coherence in the lower states: in this case the atoms

prepared by the laser radiation in a dark state are transferred to other velocity classes [18].

If this transfer applies with high efficiency, all the atomic velocity classes are pumped into

the dark state, either by direct pumping or by VCC [8].

Our active atoms are in a three-level Λ configuration. It is taken that collisions do not

possess sufficient energy to induce transitions between the upper and the lower levels. This
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assumption effectively allows one to treat the scattering of each active atom separately, such

that one can apply standard quantum mechanical scattering theory using a different total

energy for each active atom level.

We use the impact approximation in which the active atom-perturber atom collisions are

viewed to occur instantaneously, i.e., the duration τc of the typical collision is assumed to

be much less than the various time scales in the problem (with the exception of the optical

period 2π/ω, where ω is a transition frequency). In particular, the assumption that τc is

much lesser than the time Tc between collisions is called the binary collision approximation.

In our example of metastable 4He, the buffer or perturber atoms are the 4He atoms in the

ground (11S0) state. Typically, Tc ≈ 10−7 s at 1.0 Torr of buffer gas pressure and τc ≈ 10−12

s. The binary collision approximation is valid easily up to a gas pressure of 500 Torr. The

implications of the impact approximation are easily understood. Each collision produces a

change in the density matrix ρ associated with active atoms. Between collisions, the external

field produces a time rate of change for the density matrix. Since changes produced by the

external fields during collision are assumed to be negligible, the impact approximation allows

one to represent the contributions to dρ/dt as arising independently from the collisions and

external radiation fields. In this way, one obtains a ‘master’ or transport equation for ρ [19].

The influence of VCC on EIT is formally treated by writing the density matrix equations

for each velocity class and introducing in those equations the probability for VCC between

different classes [19, 20]. The contribution of VCCs to the density-matrix equations for the

populations and coherences, in general, is

d

dt
[ρij(v)]VCC = −ΓijVCCρij(v) +

∫

Kij(v
′ → v)ρij(v

′)dv′. (3)

Here the VCC process is described in terms of the collisional relaxation rates ΓijVCC, and

the associated collisional kernels are Kij(v
′ → v). The collision kernel Kij(v

′ → v) [of

the dimension of inverse length] gives the probability density per unit time that a collision

changes the velocity of an active atom in state i from v′ to v. Changes in v occur at some

average rate ΓijVCC, which is related to the kernel in the following way [21]:

ΓijVCC(v) ≥
∫

dv′ Kij(v → v′). (4)

The first term on the right-hand side in Eq. (3) can be viewed as the “out term” resulting

from collisions that remove active atoms in state i from the velocity subclass v, and the
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last term is the “in term” bringing atoms from other velocity subclasses into the subclass

v. Kii is related to the differential scattering cross-section, and ΓiiVCC is related to the

corresponding total scattering cross-section.

Since the collision interaction depends on the internal atomic states of the atoms, a

complete description requires a separate collision kernel for each atomic state population

and each coherence. In general, an excited atom has a slightly larger collisional cross-section

than a ground-state atom because excited atoms are bigger than the ground-state atoms,

and therefore the excited atoms suffer a stronger collisional damping of speeds. The opposite

holds true for the case of active alkali atoms colliding with neon where an excited atom has a

slightly lower collisional cross-section than a ground-state atom. However, in a low-pressure

regime where the decay rate Γ (≈ 108 s−1) at the optical transition (|a〉 → |b〉 or |a〉 → |c〉) is
larger than the collision rate Γ0,1 VCC (≈ 107 s−1), the transport of coherence in the optical

transition from one velocity group to another is of not much importance. For the lower-

state coherence, the situation is different, as the effective lower state relaxation (≈ 104 s−1)

is smaller than the collision rate. We can thus assume that the collision kernel is zero for

the optical coherences, is approximately the same for all populations, and is different for the

lower-state coherence:

Kab(v → v′) = Kac(v → v′) = 0,

Kaa(v → v′) = Kbb(v → v′) = Kcc(v → v′) ≡ K0(v → v′),

Kbc(v → v′) ≡ K1(v → v′). (5)

Thus, for the three-level Λ system, the added VCC contributions are:

d

dt
[ρii(v)]VCC = −Γ0VCCρii(v) +

∫

K0(v
′ → v)ρii(v

′) dv′, (i = a, b, c), (6)

d

dt
[ρ̃cb(v)]VCC = −Γ1VCCρ̃cb(v) +

∫

K1(v
′ → v)ρ̃cb(v

′)dv′, (7)

where ΓiiVCC ≡ Γ0VCC, ΓbcVCC = ΓcbVCC ≡ Γ1VCC, and ΓabVCC = ΓbaVCC = 0. Here we have

further neglected the velocity-dependence of the collision rate Γ0,1 VCC because it is usually

a slowly-varying function of velocity.
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B. Complete set of density matrix equations with relaxations

We first convert the usual density matrix elements ρij to slowly-varying variables ρ̃ij in

order to remove the fast optical oscillations by using the following transformations:

ρab = ρ̃abe
−iωPt, (8)

ρac = ρ̃ace
−iωCt, (9)

ρcb = ρ̃cbe
−i(ωP−ωC)t. (10)

Taking into account the various relaxations mentioned above, including the dynamic atomic

influx into the beam, and incorporating the effect of VCCs expressed in Eqs. (6)-(7), the

evolution of the slowly-varying density matrix elements ρ̃ij(v) for atoms with velocity v may

be written under the rotating-wave approximation as:

dρaa(v)

dt
= −(Γ0 + Γt + Γ0VCC)ρaa(v)− i

ΩP

2
[ρ̃ab(v)− ρ̃ba(v)]

−i
ΩC

2
[ρ̃ac(v)− ρ̃ca(v)] +

∫

K0(v
′ → v)ρaa(v

′) dv′, (11)

dρbb(v)

dt
=

Γ0

2
ρaa(v)− (Γt + Γ0VCC) ρbb(v) +

Γt

2
[W (v) + β (ρbb(v)− ρcc(v))] (12)

+i
ΩP

2
[ρ̃ab(v)− ρ̃ba(v)] +

∫

K0(v
′ → v)ρbb(v

′) dv′,

dρcc(v)

dt
=

Γ0

2
ρaa(v)− (Γt + Γ0VCC) ρcc(v) +

Γt

2
[W (v)− β (ρbb(v)− ρcc(v))] (13)

+i
ΩC

2
[ρ̃ac(v)− ρ̃ca(v)] +

∫

K0(v
′ → v)ρcc(v

′) dv′,

dρ̃ab(v)

dt
= −

[

Γ

2
− i(∆P − kv)

]

ρ̃ab(v) + i
ΩC

2
ρ̃cb(v)− i

ΩP

2
[ρaa(v)− ρbb(v)], (14)

dρ̃ca(v)

dt
= −

[

Γ

2
+ i(∆C − kv)

]

ρ̃ca(v)− i
ΩP

2
ρ̃cb(v) + i

ΩC

2
[ρaa(v)− ρcc(v)], (15)

dρ̃cb(v)

dt
= − [ΓR + Γ1VCC − iδR] ρ̃cb(v)− i

ΩP

2
ρ̃ca(v) + i

ΩC

2
ρ̃ab(v)

+
∫

K1(v
′ → v)ρ̃cb(v

′) dv′. (16)

Note that the total atomic population in state i at a time t is given by

ρii =
∫

∞

−∞

ρii(v) dv, (17)

and
∑3

i=1 ρii(t) = 1 for a closed system. ρ̃ij(v)s have the dimensions of inverse speed.

Equations (11)-(16) are to be solved for ρ̃ab to get the susceptibility at ωP.
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C. Strong collision approximation

These integro-differential equations can be solved using iterative techniques which may be

taken up in future. The solution can be worked out for various limiting forms of the collision

kernel, and here we follow the strong collision model, in which v(t) is a jump process. The

effect of collisions is ‘strong’, i.e., it washes out the memory of the pre-collision value of the

velocity. A single collision, on average, thermalizes the velocity distribution. The rate of

collisions is taken as an average rate given by the inverse of the mean free-time between

collisions. The collision kernel is then greatly simplified and can be approximated by

K0,1(v
′ → v) = Γ0,1 VCC W (v), (18)

where W (v) is the Maxwell-Boltzmann distribution for the velocity vector in one direction,

given by

W (v) =
1√
πu

e−(v/u)2 , (19)

where u is the most probable speed:

u =

√

2kBT

m
, (20)

m being the mass of an atom. For a temperature of 300 K, the most probable speed of

He atoms is about 1100 ms−1. In the presence of light of wave-number k, the 1/e Doppler

half-width is ku. For our system, with a laser at a frequency ωP,C = 1.74 × 1015 rad/s (or

wavelength λP,C = 1.083 µm), the Doppler half-width at half maximum (HWHM), WD/2π

= 0.9 GHz.

Note that under the assumption that the LHS of Eq. (18) is independent of the initial

velocity v′, the RHS is the only allowed form, consistent with the detailed balance of tran-

sitions

W (v′)K0,1(v → v′) = W (v)K0,1(v
′ → v),

and the conservation of probability (4).
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D. Steady-state solutions

1. Conditions for rapid VCC coverage

The excitation by a single-mode laser is velocity-selective. In the absence of VCCs,

optical pumping with a single-mode laser polarizes only a small portion of the thermal

velocity distribution.

In strong thermalizing VCCs, the root-mean-square velocity change ∆v is much larger

than the width of the resonant velocity “bin” (∆v ≫ Γ/k, with Γ the homogeneous

linewidth). To ensure rapid thermalization to access the entire velocity profile, the number

of VCCs occurring during the lower-state orientation relaxation time 1/ΓR must be large

compared to the total number of velocity bins (Γ0,1 VCC/ΓR ≫ 2ku/Γ) [22].

Also, when the photon absorption rate Γ′(v) is large compared to the rate of diffusion of

atoms across the laser beam (Γ′(v) ≫ Γt) but small compared to the rate of VCCs (Γ′(v) ≪
Γ0,1 VCC), the redistribution of atoms in the different velocity classes rebuild the Maxwell-

Boltzmann velocity distribution (i.e., VCCs thermalize the lower-state velocity distributions

rapidly compared to an absorption-emission cycle). This leads to a velocity-independent

type of optical pumping [23]. Since atoms jump from one velocity class to another, when

the number of VCCs occurring per cycle is much greater than the number of pump photons,

the pumping spreads over the entire Doppler distribution in each optical pumping cycle.

The laser is depleting a single velocity bin at a rate Γ′(v), but since the rate Γ0,1 VCC at

which the VCCs are replenishing it with atoms from the entire Doppler distribution is so

much faster, the velocity distribution stays thermalized even during the pumping process.

Under the above conditions and considering the broadening due to the thermal velocity

distribution of the atoms, we re-write the density matrix equations [18] with

ρii(v, t) = W (v)Rii(t),

ρ̃ij(v, t) = W (v)Rij(t), i 6= j. (21)

Here Rij(t)s are dimensionless, and
∑

i Rii(t) = 1, for a closed system without dissipation.

The simplified assumption (21) would imply that the effect of the VCCs is to bring about a

complete redistribution of the population over all the velocity classes such that the inhomo-

geneous media is similar to a homogeneous one but with a width given by the inhomogeneous
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Doppler-broadened width. Hence, the problem effectively reduces to that of a homogeneous

system with a Doppler-broadened pumping rate.

2. Decoherence by VCC

However, VCCs affect populations and coherences in a slightly different manner. Though

there is a redistribution of the atomic population over the entire inhomogeneous width,

VCCs can still lead to a decoherence of the Raman coherence. In order to take account

of any depolarization because of collisions that leads to a decoherence of the prepared EIT

medium, we additionally modify the collision kernel in Eq. (18) for the lower-state coherence

[18] with strong thermalizing VCCs by inserting a depolarization ratio α as

K1(v
′ → v) = α Γ1VCC W (v), (22)

with α ≤ 1 from Eq. (4). We define the parameter η ≡ 1 − α as a deviation from complete

coherence preservation. 1 > η > 0 would imply a loss of coherence by VCCs, and hence

a loss of coherently-prepared, dark-state atoms from the Maxwell-Boltzmann distributed

system. η = 0 corresponds to a complete redistribution of population over the Doppler

width by VCC, without any loss of polarization.

The VCC contribution gets added to the transit time decay (and hence the Raman

coherence relaxation) rate as ηΓ1VCC (with η ≈ 0). The populations in the lower levels

are aided by the influx of fresh atoms at the dynamic transit rate (a part of which has no

contribution from the VCC), yielding the inhomogeneity in the density matrix equations in

the steady state, necessary for non-trivial solutions.

The steady-state solutions of Eqs. (11)-(16) with particular combinations such as ρaa,

(ρbb ± ρcc) and (ρ̃cb ± ρ̃bc) are considered. Using Eqs. (21) and (22), and integrating the

relevant equations over velocity, we obtain the following:

− [Γ0 + Γt]Raa − [ΓX4(∆ + δR)](Raa −Rbb)− ΓX3(∆)(Raa −Rcc) + [ΓX1(∆ + δR)

+ΓX1(∆)]
(

Rcb +Rbc

2

)

+ i[ΓY1(∆ + δR)− ΓY1(∆)]
(

Rcb − Rbc

2

)

= 0, (23)

Γ0Raa − Γt(Rbb + Rcc) + Γt + [ΓX4(∆ + δR)](Raa − Rbb) + ΓX3(∆)(Raa −Rcc)

−[ΓX1(∆ + δR) + ΓX1(∆)]
(

Rcb +Rbc

2

)

− i[ΓY1(∆ + δR)− ΓY1(∆)]
(

Rcb − Rbc

2

)

= 0,(24)

−[(1− β)Γt](Rbb −Rcc) + [ΓX4(∆ + δR)](Raa −Rbb)− ΓX3(∆)(Raa − Rcc)
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−[ΓX1(∆ + δR)− ΓX1(∆)]
(

Rcb +Rbc

2

)

− i[ΓY1(∆ + δR) + ΓY1(∆)]
(

Rcb − Rbc

2

)

= 0,(25)

− [2ΓR + 2η Γ1VCC + ΓX3(∆ + δR) + ΓX4(∆)]
(

Rcb +Rbc

2

)

+ i
[

2δR − ΓY3(∆ + δR)

+ΓY4(∆)
]

(

Rcb −Rbc

2

)

+ ΓX1(∆ + δR)(Raa − Rbb) + ΓX1(∆)(Raa − Rcc) = 0, (26)

− [2ΓR + 2η Γ1VCC + ΓX3(∆ + δR) + ΓX4(∆)]
(

Rcb −Rbc

2

)

+ i
[

2δR − ΓY3(∆ + δR)

+ΓY4(∆)
]

(

Rcb +Rbc

2

)

+ ΓY1(∆ + δR)(Raa −Rbb)− ΓY1(∆)(Raa −Rcc) = 0. (27)

Here the different Doppler-broadened rates have the following forms:

ΓX1(∆) =
(

ΩCΩP

2

)

VX(∆), (28)

ΓX2(∆) =

(

Ω2
C + Ω2

P

2

)

VX(∆), (29)

ΓX3(∆) =

(

Ω2
C

2

)

VX(∆), (30)

ΓX4(∆) =

(

Ω2
P

2

)

VX(∆), (31)

ΓY1(∆) =
(

ΩCΩP

2

)

VY(∆), (32)

ΓY2(∆) =

(

Ω2
C − Ω2

P

2

)

VY(∆), (33)

ΓY3(∆) =

(

Ω2
C

2

)

VY(∆), (34)

ΓY4(∆) =

(

Ω2
P

2

)

VY(∆), (35)

where

VX(∆) =
Γ/2√
πu

∫

∞

−∞

e−v2/u2

dv

(Γ/2)2 + (∆− kv)2
=

√
π

ku
[1− Erf(p)] e[p

2
−q2(∆)] cos[2pq(∆)], (36)

VY(∆) =
1√
πu

∫

∞

−∞

(∆− kv)e−v2/u2

dv

(Γ/2)2 + (∆− kv)2
, (37)

with p = Γ/(2ku) and q(∆) = ∆/(ku).

From the above set of equations using these Doppler-broadened rates, we finally obtain

the steady-state value of Rab which yields ρab.

Re[Rab] = −ΓX3(∆ + δR)

ΩC

Im[Rcb]−
ΓY3(∆ + δR)

ΩC

Re[Rcb] +
ΓY4(∆ + δR)

ΩP

(Raa − Rbb),(38)

Im[Rab] =
ΓX3(∆ + δR)

ΩC
Re[Rcb]−

ΓY3(∆ + δR)

ΩC
Im[Rcb]−

ΓX4(∆ + δR)

ΩP
(Raa − Rbb), (39)
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where Re[Rcb] =
Rcb+Rbc

2
and Im[Rcb] =

Rcb−Rbc

2
.

The susceptibility for the Doppler-broadened medium is given as:

χ = A Rab, (40)

where A is the normalization constant, which is obtainable from the initial probe transmis-

sion at resonance in the absence of the coupling field.

IV. RESULTS

We now test the validity of our theory by comparing our predictions against known

experimental results in hot vapors, viz. in a He* cell [8]. For He*, collisions are expected to

play a favorable role through five different effects: (i) VCCs enable one to span the entire

Doppler profile quickly and efficiently during optically pumping; (ii) collisions aid in the

feeding distortion in pumping back more atoms in |b〉 compared to that in |c〉 when they are

entering the beam; (iii) collisions increase the transit time of the atoms through the beam

and hence the Raman coherence lifetime [16]; and (iv) this is possible because collisions

involving He atoms in the zero spin and angular momentum ground state do not depolarize

the colliding He* [24]; and (v) Penning ionization (PI) among identically polarized He*

atoms is almost forbidden [25].

We probe the general dependence of various features of interest – Doppler-averaged Fano-

like transmission profiles, the variation of the EIT width, the peak transmission and the

group delay with the coupling intensity – on the following system characteristics: the VCC

parameter η, the unequal atomic influx parameter β, the Raman decoherence rate ΓR, and

the initial transmission T0 which carries the information about the number density of the

participating atoms. In our model, the effect of collisions is incorporated through collisional

dephasing of both the optical and Raman coherences given in Eqs. (1) and (2), the collision-

induced diffusive (as opposed to ballistic) transit rate Γt of the atoms, a complete redistri-

bution of the atomic population over all velocity classes leading to a velocity-independent

optical pumping under rapid VCC coverage, and the VCC decoherence rate Γ1 VCC entering

when the VCC parameter η 6= 0. For the He* system, we find that the decoherence due

to VCC is very small. As η is a deviation from the complete polarization-conservation by

VCC, it should not depend on the beam size. We choose a value of η = 10−4, which helps
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us to obtain good fits to the measured evolutions with the coupling intensity for each of

EIT width, peak transmission and group delay, for all the measured beam diameters, with

Γ1 VCC = 107 s−1, which is simply the number of collisions per second as mentioned earlier.

The excess incoming rate, β Γt

2
(ρbb(v)− ρcc(v)) to state |b〉 over |c〉 also has a distinct impact

on the various features. In particular, the parameter β = 0.1 gives satisfactory results in

comparing the theoretical results with the experimentally measured evolutions. With the

precisions of our measurements in He*, a constant value of β is found to fit well for all beam

diameters. The choice of the best-fit values of the parameters η and β for the He* system

has been elaborated using the group delay plots in subsection D below.

There was a slight over-estimation of the initial transmission T0 for the EIT experiments

in He*, reported in Ref. [8] directly from the measured values, which included an effect of

partial saturation by the probe power. This has been adjusted in the present paper.

A. Doppler-broadened Fano-like profiles

When the coupling beam frequency is no longer at the center of the Doppler profile, trans-

mitted intensity profiles become asymmetric. This is similar to the Fano profiles obtained

in the case of EIT in a homogeneously-broadened medium and which have been shown to be

due to interferences between a direct process and stimulated Raman scattering in the overall

transition probability [11, 12]. However, here, these profiles are modified by the fact that

they have to be convoluted with the inhomogeneous Doppler profile. Figure 2 shows the

evolution of the transmission versus Raman detuning δR for different values of the detuning

∆ of the coupling beam with respect to the center of the Doppler profile. On the left-hand

side, the measured values through a He* cell with initial transmission at resonance T0 =

0.56 for a beam diameter of 1.5 cm, a coupling power of 11 mW and a probe power of 140

µW are reproduced from Ref. [8]. The base of the symmetric (black) curve at resonance

corresponds to a transmission higher than 0.56, because of partial saturation of the medium

by the probe intensity.

Theoretically, the transmission profiles are generated from the imaginary part of the

susceptibility at different detunings ∆ of the coupling beam with respect to the center of

the Doppler profile mentioned above. The corresponding plots on the right-hand side of

Fig. 2 are obtained for a beam diameter of 1.5 cm corresponding to different values of ∆,
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FIG. 2: Evolution of the transmission versus Raman detuning δR for different values of the detuning

∆ of the coupling beam with respect to the center of the Doppler profile: on the left-hand side,

the measured values through a He* cell with T0 = 0.56 for a beam diameter of 1.5 cm, a coupling

power of 11 mW and a probe power of 140 µW with (a) ∆ = 0 (black, triangles), (b) ∆ = 0.4 GHz

(magenta, open circles), (c) ∆ = 1.0 GHz (green, diamonds), (d) ∆ = 1.4 GHz (blue, crosses),

and (e) ∆ = 2.1 GHz (orange, open squares), are reproduced from Ref. [8]. On the right-hand

side, theoretical evolution of the transmission versus Raman detuning δR, corresponding to those

obtained experimentally are shown with (a) ∆ = 0 (black), (b) ∆ = 0.4 GHz (magenta), (c)

∆ = 1.0 GHz (green), (d) ∆ = 1.4 GHz (blue), and (e) ∆ = 2.1 GHz (orange), using ΓR/2π = 4.3

kHz, Γt/2π = 0.41 kHz, η = 10−4, and β = 0.1.

with the same initial transmission, coupling and probe powers as in the experiment, using

ΓR/2π = 4.3 kHz, Γt/2π = 0.41 kHz, η = 10−4, and β = 0.1. The transmission profiles at all

values of ∆ increases slightly with an increase in β. This is also seen in the behavior of peak

transmission shown in subsection C. This has been checked for a range of β from 0 to 0.1.

There is a distinct and sensitive dependence on η, as the tip of each profile decreases slightly

with an increase of η, and the effect is the largest on the resonant profile. As a result, there

is also a change in the relative placement of the profiles. This has been checked for a range

of values of η from 10−3 to 0. The reason for this is simple. Since a deviation of the value

of η from 0 indicates a loss of coherence, the transmission at resonance will be greater for η

closer to 0, because the system is more coherent as η approaches 0. Additionally, the effect
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will be more pronounced when the atomic system is in resonance with the two fields, which

is the condition for a perfect EIT. We thus find that the predictions from our model indeed

agree very well with the experimental results.

B. EIT width

The mechanism of decoherence in EIT in a room-temperature gas can be probed by

measuring the width of the EIT resonance as a function of the coupling beam intensity. As

mentioned in the Introduction, the theoretical treatment of EIT in Doppler-broadened gases

[5], assuming the population exchange between the lower levels to be the main source of

decoherence, predicts a nonlinear dependence for weak coupling powers: the EIT width is

expected to evolve with the coupling beam Rabi frequency ΩC [26] according to:

ΓEIT ≃ Ω2
C

4δeff
, (41)

where δeff gives the effective width over which the atoms are pumped into the probe ground

state for a fixed value of ΩC. In the case when ΩC ≪ Ωinhom = 2
√

2ΓR/ΓWD, δeff is dependent

on ΩC and ΓR: δeff = ΩC

√

Γ0/8ΓR, and the coherent population trapping is shown to be

velocity selective, i.e., it occurs only for those atoms whose frequencies are close to resonance

with the coupling field. In the opposite regime, when ΩC ≫ Ωinhom, Ref. [5] predicts that

δeff = WD, i.e., in the limit of very large intensity, it is reduced to the power-broadening

case.

In contrast, in Ref. [7] it is assumed that all the atoms across the Doppler profile are ini-

tially optically pumped by the coupling beam to the probe ground level, and the decoherence

in the lower states is caused by pure dephasing, and not population exchange. Then the

response of the medium up to first order in probe field yields the following linear dependence

of the EIT linewidth on the coupling beam intensity:

ΓEIT = 2ΓR +
Ω2

C

2WD + Γ
. (42)

An example of the evolution of the EIT width versus the intensity of the coupling beam

is displayed in Fig. 3(a). In the experiment with He* [8], the logarithm of the transmitted

intensity is calculated and its full width at half maximum (FWHM) is then measured, in

order to determine precisely the width of the susceptibility χ of the medium. The measured
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sub-natural (< Γ) widths for a beam diameter of 1.5 cm, a probe power of 100 µW and an

initial transmission T0 = 0.46 are shown as dots. Theoretically, the imaginary part of the

susceptibility is fitted with a Lorentzian to obtain the FWHM corresponding to a particular

coupling intensity. The continuous line in Fig. 3 is the best fit from our model with the same

parameters as in the experiment, using ΓR/2π = 4.3 kHz, Γt/2π = 0.41 kHz, η = 10−4, and

β = 0.1. The EIT width ΓEIT is seen to evolve linearly with the coupling beam intensity,

i.e., quadratically with the coupling beam Rabi frequency ΩC.

With the experimental parameters (Γ = 1.4 × 108 s−1 at 1 Torr, ΓR = 104 − 105 s−1,

WD/2π = 0.9 GHz) [8], one obtains 108 rad/s ≤ Ωinhom ≤ 4×108 rad/s. Since the maximum

Rabi frequencies ΩC used in the experiment are smaller than 5 × 107 rad/s, the measure-

ments are in the first regime of [5], where ΩC ≪ Ωinhom. Thus ΓEIT is predicted to evolve

linearly with ΩC [5], with a slope depending on ΓR, but these predictions are violated in

the experiment. If we use Eq. (41) to fit the linear evolution of ΓEIT versus the coupling

intensity, we obtain δeff/2π = 0.5 GHz, which is of the same order of magnitude as WD/2π,

showing that a major part of the Doppler profile takes part in the EIT process.

In our model we achieve the straight line feature of ΓEIT versus coupling intensity as in

Ref. [7], but without any assumptions of special initial conditions. Moreover, if the data

are fitted to the straight line given by Eq. (42), the resulting estimate of ΓR/2π does not

reproduce accurately the measured evolutions of the peak-transmission and delay [8, 28].

Our present model fits the straight line data for atomic 87Rb vapor at temperatures 60-

100◦C given in Ref. [7], with appropriate values of the parameters for the optically thick

system.

Keeping all other parameters constant, a change in the initial transmission T0, and hence

in the number density of the participating atoms in the cell, does not affect the evolution

of the EIT width with coupling intensity in our model. Likewise, a change in the unequal

feeding parameter β does not produce any visible change in the EIT width. This has

been checked for a range of values of β = 0 to 0.5. This is understandable as these two

parameters do not affect the Raman coherence lifetime but affect the pumping efficiency

(e.g. the fraction of atoms that participate in the EIT phenomenon).

Figure 3(b) shows the variation of the EIT width with the coupling intensity from our

model for different values of the Raman decoherence rate ΓR around the best-fit value,

keeping η, β and T0 constant. It clearly shows that the slope of the evolution is the same
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FIG. 3: Evolution of the EIT window width versus coupling beam intensity for a beam diameter

of 1.5 cm with a probe power of 100 µW: (a) the experimentally measured values for T0 = 0.46,

reproduced from Ref. [8], are shown as dots, along with the theoretical best fit (continuous line)

from our model using η = 10−4, β = 0.1, ΓR/2π = 4.3 kHz and Γt/2π = 0.41 kHz. (b) Predictions

from our model for different values of the Raman decoherence rate: (i) ΓR/2π = 3.2 kHz (dashed),

(ii) ΓR/2π = 4.3 kHz (continuous), and (iii) ΓR/2π = 5.2 kHz (dotted), with the rest of the

parameters the same as in (a). (c) Predictions from our model for different values of the VCC

parameter: (i) η = 10−3 (dashed), (ii) η = 10−4 (continuous), and (iii) η = 0 (dotted), with the

rest of the parameters the same as in (a). (d) Predictions from our model for different values of the

optical coherence decay rate: (i) Γ/2π = 0.1 MHz (dashed), (ii) Γ/2π = 22.3 MHz (continuous),

and (iii) Γ/2π = 150 MHz (dotted). The continuous line is the same in all the figures.

for different values of ΓR. Note that different laser beam diameters would lead to different

transit times of the atoms through the beam, and hence different Γt. The motion of the

atoms through the beam is assumed to be diffusive, as stated previously, because of the

large number of collisions they undergo. The Raman decoherence rate ΓR given by Eq. (15)
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thus contains a variable Γt plus other terms. For the He* measurements, we estimate

that (ΓR − Γt)/2π ≈ 4 kHz for a low pressure of 1 Torr and an ambient magnetic field

inhomogeneity. This is obtained by estimating first Γt for a particular beam diameter, and

then ΓR from the best fit of (primarily) the EIT-width data. In the experiment, the beam

diameters are generally not precisely known, because the beam emerging from the acousto-

optic modulators is not perfectly Gaussian. This affects the precise determination of the

transit times as well as beam intensities (the probe and coupling powers measured before

the He* cell were, of course, their average values) and Rabi frequencies. We have, however,

checked that the experimental data for different beam sizes yield the Γt values following the

diffusive transit scenario.

Figure 3(c) shows the variation for different values of the VCC parameter η. The slope

of the evolution is the same for different values of α but the intercept increases with an

decrease of η. From Figs. 4(b) and (c), the width-intercept at ΩC = 0 are seen to depend on

the parameters ΓR and η, yielding a narrower resonance for a lower ΓR or a lower η. The

inset shows that the measured data fit better with η 6= 0 and β 6= 0. However, the lines

do not fit Eq. (42), with ΓR of Ref. [7] simply replaced here by ΓR + η Γ1 VCC. As pointed

out earlier, in the density-matrix equations, the VCC contribution gets added to the transit

time decay (and hence the Raman coherence relaxation) rate as η Γ1 VCC, except in the

inhomogeneous term signifying atomic influx in the populations in the lower levels at the

transit rate Γt which has no contribution from the VCC. It is therefore not surprising that

the net effect of η cannot be taken care of by Γt or ΓR.

Figure 3(d) shows the variation of the EIT width with the coupling intensity from our

model for different values of the optical coherence decay rate Γ. The slope of the line changes

inversely with changes in the values of WD and Γ.

C. Peak transmission

We next consider the maximum probe transmission at resonance (∆ = 0) corresponding to

different coupling intensities. Figure 4(a) shows the evolution of the cell transmission versus

coupling beam intensity. The measured values (dots) through a He* cell for a beam diameter

of 1.5 cm are reproduced from Ref. [8]. The corresponding continuous curve is obtained from

our theory by calculating the transmission at two-photon resonance δR = 0, with η = 10−4,
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β = 0.1 at the same initial transmission and probe power as in the experiment: probe power

of 70 µW, T0 = 0.46, ΓR/2π = 4.3 kHz, and Γt/2π = 0.41 kHz.

Using the same hypotheses as for the derivation of Eq. (42) [7], the peak transmission is

predicted to evolve as [8]:

ln(T ) =
ln(T0)

1 +
Ω2

C

2ΓR(2WD+Γ)

. (43)

It is seen that there is a better agreement of the experimental result with our present theory

than what was obtained using Eq. (43) in Ref. [8] with the value of ΓR deduced from the EIT-

width data, in spite of the fact that we do not assume ρbb(t = 0) = 1, i.e., a system perfectly

prepared by optical pumping at t = 0 as in Ref. [7], is redundant here in the presence of

rapid VCC coverage.

Figure 4(a) also shows the variation of the peak transmission with the coupling intensity

from our model for different values of the VCC parameter η. The dotted and the dashed

plots correspond to η = 0 and 10−3, respectively. It can be thus inferred that the peak

transmission increases with a decrease in η. This also has support from the effect of η on the

Doppler-broadened profiles in Fig. 2 for the same reason. The best-looking fit for η = 10−4

emphasizes that the depolarization due to VCCs is a small effect, as expected from the work

of Shlyapnikov et al. [25].

Figure 4(b) shows the variation of the peak transmission with the coupling intensity from

our model for different values of the Raman decoherence rate ΓR around the best-fit value,

when η, β and T0 are kept constant [27]. It is clear that a lower decoherence rate ΓR leads to

a more coherent system, and thus ΓR/2π = 3.2 kHz (dashed curve) yields the highest peak

transmission compared to the rest shown in this plot. Thus the evolutions from our model

are consistent with our physical understanding. Also note that Figs. 4(a) and (b) show that

an increase in ΓR has a similar effect as a decrease in η.

Figure 4(c) shows the same for different values of the unequal feeding parameter β from

the theory. The effect of β here is clearly very distinct. As β increases, there are more atoms

entering the laser beam in the dark state |b〉. Thus, the peak transmission at two-photon

resonance will also increase as the transparency is more when more atoms can participate

in the EIT phenomenon.

Figure 4(d) shows the effect of different values of the initial transmission T0. It is obvious

that a higher initial transmission T0 would lead to a higher peak transmission for non-zero

23



FIG. 4: Evolution of the cell transmission versus coupling beam intensity for a beam diameter

of 1.5 cm with a probe power of 70 µW and T0 = 0.46: (a) the experimentally measured values

through a He* cell, reproduced from Ref. [8], are shown as dots, along with the theoretical best fit

(continuous curve) from our model using η = 10−4, β = 0.1, ΓR/2π = 4.3 kHz and Γt/2π = 0.41

kHz. Also shown are the predictions from our model for different values of the VCC parameter:

η = 10−3 (dashed), and η = 0 (dotted). (b) Predictions from our model for different values of the

Raman decoherence rate: (i) ΓR/2π = 3.2 kHz (dashed), (ii) ΓR/2π = 4.3 kHz (continuous), and

(iii) ΓR/2π = 5.2 kHz (dotted), with the rest of the parameters the same as in the continuous fit in

(a). (c) Predictions from our model for different values of the unequal feeding parameter β: (i) β

= 0 (dashed), (ii) β = 0.1 (continuous), and (iii) β = 0.5 (dotted), with the rest of the parameters

the same as in the continuous fit in (a). (d) Predictions from our model for different values of the

initial transmission: (i) T0 = 0.4 (dashed), (ii) T0 = 0.46 (continuous), and (iii) T0 = 0.6 (dotted),

with the rest of the parameters the same as in the continuous fit in (a). The continuous curve is

the same in all the figures.
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coupling intensities.

D. Group delay

Figure 5(a) shows the measured evolution of the group delay (through a He* cell of length

2.5 cm) versus coupling beam intensity for a beam diameter of 1.5 cm (dots), reproduced

from Ref. [8]. The results have been obtained with Gaussian probe pulses of duration of 70

µs with a peak power of 35 µW and with the coupling and probe beam frequencies at the

center of the Doppler profile (∆ = δR = 0).

In the slow-light experiments performed with He*, reported in Ref. [8], the measured

delays for non-zero coupling intensities were slightly overestimated as the reference used was

the probe pulse in the absence of a coupling beam.

Theoretically, the group delay is calculated from the derivative of the real part of the

susceptibility with respect to frequency at two-photon resonance, for the experimentally

used parameters. The continuous curve in Fig. 5(a) is the best fit obtained from our model

with ΓR/2π = 4.3 kHz, Γt/2π = 0.41 kHz, η = 10−4 and β = 0.1, for the same probe power

of 35 µW and the same initial transmission T0 = 0.46 as in the experiment.

The group velocity derived [8] from the susceptibility of Ref. [7] leads to a group delay at

the line center (∆ = δR = 0) given by:

τg = − ln(T0)
(2WD + Γ)Ω2

C

[2ΓR(2WD + Γ) + Ω2
C]

2 . (44)

The maximum value of the group delay is reached for Ω2
C = 2ΓR(2WD + Γ) and its value is

− ln(T0)/8ΓR. Again, there is a better agreement of the experimental results with our present

theory than what was obtained in Ref. [8] using Eq. (44), with the value of ΓR deduced from

the EIT-width data.

Figure 5(a) also shows the comparison of the group delay profiles from our theory for

different values of η = 10−3 (dashed curve) and 0 (dotted curve) around the best-fit value

corresponding to η = 10−4 (continuous curve), for the 1.5 cm-diameter beam. The magnified

part shown in the inset justifies the choice of the VCC parameter value of η = 10−4 for the

measured data for He*, which is distinct from that of η = 0. As mentioned earlier, the

measured data were over-estimated and a good fit running slightly below the data points

would require a sensitive adjustment of η > 0 (as shown).
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FIG. 5: Evolution of the group delay with the coupling intensity for a beam diameter of 1.5 cm,

with a probe power of 35 µW and T0 = 0.46: (a) the experimentally measured values through a

He* cell, reproduced from Ref. [8], are shown as dots, along with the theoretical best fit (continuous

curve) from our model using η = 10−4, β = 0.1, ΓR/2π = 4.3 kHz and Γt/2π = 0.41 kHz. Also

shown are the predicted variations from our model for different values of the VCC parameter:

η = 10−3 (dashed), and η = 0 (dotted). (b) Predictions from our model for different values of the

Raman decoherence rate: (i) ΓR/2π = 3.2 kHz (dashed), (ii) ΓR/2π = 4.3 kHz (continuous), and

(iii) ΓR/2π = 5.2 kHz (dotted), with the rest of the parameters the same as in the continuous fit

in (a). (c) Predictions from our model for different values of the unequal feeding parameter β: (i)

β = 0 (dashed), (ii) β = 0.1 (continuous), (iii) β = 0.5 (dotted), with the rest of the parameters

the same as in the continuous fit in (a). (d) Predictions from our model for different values of the

initial transmission: (i) T0 = 0.4 (dashed), (ii) T0 = 0.46 (continuous), and (iii) T0 = 0.6 (dotted),

with the rest of the parameters the same as in the continuous fit in (a). The continuous curve is

the same in all the figures.
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Figure 5(b) shows the comparison of the group delay profiles from the theory for different

values of ΓR around the best-fit value, for the 1.5 cm-diameter beam. ΓR indeed has a great

impact on the delay which is clear because lower the value of ΓR (for example, the dashed

curve for ΓR/2π = 3.2 kHz), more is the coherence, hence higher are the delays achieved in

the system.

Figure 5(c) shows the same as above for different values of β around the best-fit value, for

a range of β from 0 to 0.5. We see that with an increase of β, the delays at different coupling

intensities decrease. On comparison with the plots of peak transmission for different values

of β in Fig. 4(c), one deduces that the effect of β on these two characteristics are opposite.

We can understand this as follows. If an increase of β increases the peak transmission (as

seen and explained above), then from the relationship of resonant peak transmission and

delay, it becomes clear that an increased transmission would lead to a decrease in the group

delay. This is also manifested in Eqs. (43) and (44). The inset at a magnified scale shows

the comparison of the plots for β = 0 and β = 0.1 with reference to the measured data

points – it is clear that β = 0.1 provides a distinctly better fit than β = 0.

Figure 5(d) shows the comparison of the group delay profiles from the theory for different

values of T0 around the best-fit value, for the 1.5 cm-diameter beam. The group delay

increases with a decrease in T0 and the effect is also supported by Eq. (44). A decrease in

the initial transmission in the absence of the coupling field signifies a proportionate increase

in the number of participating atoms. T0, however, does not affect the EIT width. Thus the

delay-bandwidth product, which is a figure of merit for a delay/storage medium, turns out

to be proportional to the number density of the medium.

In comparison to the width and the peak transmission plots shown in Figs. 3 and 4

respectively, we note that ΓR, η, β and T0 have a greater impact on the delay as seen from

Fig. 5, especially in determining the peak of the delay curve.

V. CONCLUSIONS

We have presented a realistic analysis of EIT and slow light in a hot atomic vapor, taking

into account all the relevant decoherence processes, for arbitrary strengths of the probe and

the coupling fields, and without assuming any special initial condition. We have considered

the influx of fresh atoms in the lower levels and the outflux from all the levels at a transit
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rate in the gas. Unlike the theory for EIT in a Doppler-broadened medium in Ref. [5] in

which the role of collisions is completely neglected, our analysis includes phase-interrupting

collisions of active atoms as well as velocity-changing collisions, modeled effectively in the

strong collision limit. We have demonstrated the role of VCCs in redistributing the atomic

population over all velocity classes and hence a velocity-independent optical pumping. The

initial condition of ρbb = 1, i.e., a system perfectly prepared by optical pumping at t = 0 in

Ref. [7], is redundant here in the presence of rapid VCC coverage.

The steady-state solutions for the atomic density matrix elements are presented in the

strong-collision approximation with a model for the VCCs under rapid VCC coverage. A

value of the VCC parameter η > 0 indicates a loss of coherence by VCCs. As observed from

the results, all the EIT characteristics have a sensitive dependence on η. In our example of

the He* system [8], it was found that a small value of η = 10−4 gives the best fits for all the

measured characteristics for different beam sizes.

For He*, the motion of the atoms through the beam is assumed to be diffusive, because

of the large number of collisions they undergo. Further, because of diffusion and favourable

collisions outside the interaction region, we have allowed a slightly greater fraction of atoms

to enter the beam prepared in state |b〉 than those in state |c〉 using a parameter β. The best

fit value of β > 0 supports this fact. For all systems in which other decoherence effects are

small so that atoms can diffuse out of the interaction region and return before decohering,

the unequal feedback fraction would model such a positive contribution to the coherence,

similar in effect to a decrease in the number density or an increase in the initial transmission

T0. A constant value of β is found to fit different beam sizes, given the precision of the

reported measurements.

For non-zero detunings ∆ of the coupling field from the center of the Doppler-broadened

transition frequency, the transmitted intensity profiles become asymmetric about the two-

photon resonance (Raman detuning δR = 0). This Fano-like feature is a signature of the

two-photon process of EIT, and emerges naturally from our model. The EIT width ΓEIT,

simulated from our model, shows a linear dependence on the coupling beam intensity, i.e., a

quadratic dependence on the coupling beam Rabi frequency ΩC, as observed in experiments.

The evolutions of the peak transmission and the group delay with the coupling beam inten-

sity predicted from our analysis faithfully reproduce the experimentally observed behaviors.

In the evolution of all these features of interest, an increase in the Raman decoherence
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rate ΓR seems in general to have a similar effect as an increase in the VCC parameter η.

But whatever the beam diameter, η should remain constant, while Γt and hence ΓR should

decrease when the beam diameter increases (keeping ΓR − Γt constant).

EIT has recently found applications in white-light cavities [29] for use in gravitational

wave detection. For applications of slowing of light for use in quantum-information process-

ing, and in particular, in quantum memory, the medium needs to be optically dense. Our

model is applicable to all such systems of hot atomic vapor, which are attractive candidates

for practical applications requiring large-bandwidth controllable delays, for example, for

signal processing at the appropriate wavelength. The system can be generalized to model

tripod-like systems [30] in hot vapor.
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