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Abstract

The PT -symmetric complexified Scarf II potential V (x) = −V1 sech
2
x +

iV2 sechx tanh x, V1 > 0 , V2 6= 0 is revisited to study the interplay among its cou-
pling parameters. The existence of an isolated real and positive energy level that
has been recently identified as a spectral singularity or zero-width resonance is here
demonstrated through the behaviour of the corresponding wavefunctions and some
property of the associated pseudo-norms is pointed out. We also construct four differ-
ent rationally-extended supersymmetric partners to V (x), which are PT -symmetric
or complex non-PT -symmetric according to the coupling parameters range. A de-
tailed study of one of these partners reveals that SUSY preserves the V (x) spectral
singularity existence.
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1 Introduction

After the pioneering work by Bender and Boettcher [1] in 1998 that enforced the idea of PT

symmetry to conjecture that the whole class of non-Hermitian Hamiltonians respecting this

symmetry may exhibit (under some conditions related to PT being exact or spontaneously

broken) real or conjugate pairs of energy eigenvalues, research in this direction has actively

flourished during the past decade [2]. Later, in an important development, Mostafazadeh [3]

showed that the concept of PT symmetry is rooted in the theory of pseudo-Hermitian op-

erators. The pseudo-Hermiticity of the Hamiltonian serves as one of the plausible necessary

and sufficient conditions for the reality of the spectrum [4].

Among the numerous models proposed on complex Hamiltonians which are PT -

symmetric/pseudo-Hermitian, the complexified Scarf II potential [5, 6, 7]

V (x) = −V1 sech
2 x+ iV2 sech x tanh x, V1 > 0, V2 6= 0 (1)

is particularly of interest due to a variety of reasons. First, a class of Hamiltonians having

(1) as its potential is not only PT -symmetric but also P-pseudo-Hermitian [8]. Moreover

it is pseudo-supersymmetric [9] and also nonlinearly so [10]. Second, despite being non-

Hermitian in character, it is isospectral to a real potential admitting of a real discrete

spectrum [11]. Third, it is realized from the very early days of PT symmetry that in the

framework of two non-commuting inter-connecting complex sl(2) algebras [7, 12], there

are in general two series of energy levels associated with it. Note that the conventional

Hermitian hyperbolic Scarf potential is rendered PT -symmetric by complexifying one of

its coupling parameters — indeed such a complexification is responsible for the appearance

of an additional series of energy levels as first pointed out by Bagchi and Quesne in [12].

The second series of bound states shows up as resonances in its Hermitian version. The

PT -symmetric Scarf II has been interpreted in terms of supersymmetry [13, 14] and also in

the framework of an su(1, 1) ∼ so(2, 1) algebra [15], as well as that of an so(2, 2) potential

algebra [16]. Fourth, unlike its Hermitian counterpart the rationally-extended version of

(1), namely the potential

Vext(x) = −(V1 − 2a) sech2 x+ i(V2 − 2b) sech x tanhx

−
4b

2b− i(2a− 1) sinh x
+ 2

4b2 − (2a− 1)2

[2b− i(2a− 1) sinh x]2
,

(2)
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where a and b are appropriately chosen real parameters known from a SUSY association

with (1), is free from any pole-like singularity, as already observed in a special case in [17].

Fifth, in a recent development [18], it has been shown in a general formulation that for

certain conditions prevailing upon its parameters, it runs into a single zero-width resonance

or a so-called spectral singularity [19, 20, 21].

In this paper, we deepen our understanding on the PT -symmetric Scarf II potential

and its rationally-extended version by providing an update on them that also brings out

some of their new underlying features especially the one concerning the existence of spectral

singularities in the context of Ahmed’s recent work [18].

In section 2, we start by reviewing the bound-state wavefunctions of the PT -symmetric

Scarf II potential. Such a knowledge is then used in section 3 to demonstrate the existence

of spectral singularities. The construction of rationally-extended SUSY partners is carried

out in section 4. Bound-state wavefunctions and spectral singularities are presented for one

of these partners in section 5. Finally, section 6 contains the conclusion.

2 Bound-state wavefunctions of PT -symmetric Scarf

II potential

We begin by giving a direct evaluation of the bound-state wavefunctions corresponding to

the potential (1). Adopting the following notations:

p = 1
2

√

|V2|+ V1 +
1
4
, q = 1

2

√

|V2| − V1 −
1
4
, s =

1

2

√

1

4
+ V1 − |V2|, (3)

we look for solutions of the type

ψ(x) = sechλ x exp[µ arctan(sinh x)]φ(y), φ(y) ∝ P (α,β)
n (y), (4)

where y = i sinh x, P
(α,β)
n (y) are the Jacobi polynomials and λ, µ, α, β are four constants

to be determined appropriately.

Indeed substitution in (1) yields the Jacobi form of the differential equation

{

(1− y2)
d2

dy2
+ [β − α− (α + β + 2)y]

d

dy
+ n(n+ α + β + 1)

}

P (α,β)
n (y) = 0 (5)
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subject to the following matching conditions:

β − α = −2iµ, (6)

α + β + 2 = 1− 2λ, (7)

λ(λ+ 1)− µ2 = V1, (8)

(2λ+ 1)µ = −iV2, (9)

λ2 + En = −n(n + α + β + 1). (10)

From (6), (7) and (10), we get

α = −λ+ iµ− 1
2
, β = −λ− iµ− 1

2
, En = −(λ− n)2. (11)

Let us note here that since the asymptotic behaviour of ψ(x) is controlled by the factor

e−(Re λ−n)|x|, it will correspond to a bound state if n < Reλ, implying that in such a case

Reλ > 0.

Turning to (8) and (9), we see that we can recast them into the combinations

(λ± iµ)2 + (λ± iµ)− (V1 ± V2) = 0. (12)

These second-degree equations have real solutions if 1 + 4(V1 ± V2) ≥ 0. Hence if

|V2| ≤ V1 + 1
4
, both the equations yield real solutions, while if the contrary holds, i.e.

|V2| > V1 +
1
4
, one of them furnishes real solutions and the other gives complex-conjugate

roots. Interestingly, similar inequalities on |V2| emerge from the analysis of complex Lie

algebras, such as sl(2), for studying the transition from real to complex eigenvalues [7].

Let us study a more detailed treatment of these conditions.

• |V2| ≤ V1 +
1
4

Solving (12) we get

λ = −1
2
+ 1

2

(

ǫ+

√

1
4
+ V1 + V2 + ǫ−

√

1
4
+ V1 − V2

)

∈ R,

µ = i
2

(

−ǫ+

√

1
4
+ V1 + V2 + ǫ−

√

1
4
+ V1 − V2

)

∈ iR,

(13)
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where ǫ+, ǫ− = ±. As a consequence of (11) and (13), En is real. It follows that if

0 < V2 ≤ V1 +
1
4
, we have to choose ǫ+ = +, ǫ− = ǫ = ± in order to get λ > 0. Employing

the notations defined in (3), we can express

λ = −1
2
+ p+ ǫs, µ = −i(p− ǫs), α = −2ǫs, β = −2p. (14)

However, if −V1 −
1
4
≤ V2 < 0 holds, we have to choose ǫ− = +, ǫ+ = ǫ = ± yielding

λ = −1
2
+ p+ ǫs, µ = i(p− ǫs), α = −2p, β = −2ǫs. (15)

On denoting the sign of V2 by ν, both the sub-cases given above can be considered

simultaneously and we arrive at the results

Enǫ = −
(

p+ ǫs− n− 1
2

)2
, n = 0, 1, 2, . . . < p+ ǫs− 1

2

(

provided p+ ǫs > 1
2

)

,

λ = −1
2
+ p+ ǫs, µ = −iν(p − ǫs),

α = −(1 + ν)ǫs− (1− ν)p, β = −(1 + ν)p− (1− ν)ǫs.

(16)

• |V2| > V1 +
1
4

Here two cases arise. For V2 > V1 +
1
4
, we obtain

λ = −1
2
+ ǫ+p+ iǫ−q ∈ C, µ = i(−ǫ+p+ iǫ−q) ∈ C. (17)

Hence En is now complex. Furthermore, bound states can only correspond to ǫ+ = +,

ǫ− = ǫ = ± and as such the parameters λ, µ, α, β assume the form

λ = −1
2
+ p+ iǫq, µ = −i(p− iǫq), α = −2iǫq, β = −2p. (18)

On the other hand, for V2 < −V1 −
1
4
, the solutions are

λ = −1
2
+ ǫ+iq + ǫ−p ∈ C, µ = i(−ǫ+iq + ǫ−p) ∈ C. (19)

The eigenvalues En are complex again, but the bound states now correspond to ǫ− = +,

ǫ− = ǫ = ±. Thus it follows that

λ = −1
2
+ p+ iǫq, µ = i(p− iǫq), α = −2p, β = −2iǫq, (20)

leading to the results

Enǫ = −
(

p+ iǫq − n− 1
2

)2
, n = 0, 1, 2, . . . < p− 1

2

(

provided p > 1
2

)

,

λ = −1
2
+ p+ iǫq, µ = −iν(p− iǫq),

α = −(1 + ν)iǫq − (1− ν)p, β = −(1 + ν)p− (1− ν)iǫq.

(21)
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3 Spectral singularities of PT -symmetric Scarf II po-

tential

If we set p− 1
2
= n [18] in equation (21), then the complex energy eigenvalues En+ and En−

collapse to a single real and positive value

E∗ = q2 = 1
4

(

|V2| − V1 −
1
4

)

(22)

with the conditions on p translating to

V1 + |V2| = 4n2 + 4n + 3
4
. (23)

The corresponding wavefunctions remain solutions of the Schrödinger equation and are

given explicitly by

ψnǫ(x) = Nnǫ(sech x)
n+iǫq exp

[

−iν
(

n+ 1
2
− iǫq

)

arctan(sinh x)
]

P (α,β)
n (i sinh x), (24)

where

α = −(1− ν)
(

n + 1
2

)

− (1 + ν)iǫq, β = −(1 + ν)
(

n + 1
2

)

− (1− ν)iǫq (25)

and Nnǫ are some undetermined normalization coefficients.

For x→ ±∞, they satisfy the asymptotic boundary conditions

ψnǫ(x) → Nnǫ(±i)n2iǫq exp

[

∓iν

(

n+
1

2
− iǫq

)

π

2

]

e∓iǫqx. (26)

From this we infer that the solutions of the eigenvalue equation Hψq±(x) = E∗ψq±(x) such

that ψq±(x) → e±iqx as x → ±∞, i.e. the Jost solutions, are both proportional to ψn−(x),

hence are linearly dependent. We therefore conclude [19, 20, 21] that E∗ is a spectral

singularity of H for the complexified Scarf II potential (1).

Normally in PT -spontaneously broken scenarios, complex conjugate eigenvalues develop

and the energy eigenfunctions cease to be eigenstates of the PT operator while their pseudo-

norm vanishes [22]. In the present case, we have an exceptional situation: the potential is

PT -symmetric but its wavefunctions are not so (actually PT ψn+(x) = ψn−(x)); yet the

corresponding eigenvalue E∗ is real and positive, which is a feature of a spectral singularity.
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Furthermore, it can be checked that after the collapse of En+ and En−, the pseudo-norm

of the wavefunctions assumes a finite nonvanishing value. For n = 0, for instance, we get
∫ ∞

−∞

dx [ψ0ǫ(−x)]
∗ψ0ǫ(x) = [N0ǫ|

2

∫ ∞

−∞

dx exp[−iν arctan(sinh x)]

= [N0ǫ|
2

∫ ∞

−∞

dx (sech x− i tanhx) = π[N0ǫ|
2.

(27)

We now make a few remarks on Ahmed’s recent work [18]. From the identification of

the poles of the transmission amplitude for (1), he was led to the following relation for the

energy eigenvalues

En = −
[

n + 1
2
− (p± iq)

]2
, n = 0, 1, 2, . . . . (28)

We recognize En to be also consistent with the direct determination of the same as suggested

by (21). Ahmed then identifies the real energy E∗ given by (22) as where the spectral

singularity or zero-width resonance occurs by applying Theorem 2 of [20]. So both his

approach and ours lead to the same conclusion, but we think that the derivation presented

here looks more straightforward.

We would also like to point out that there is some mix-up in the assignment of the char-

acter of the parameters in [18]. For instance, the notations q and s are mis-identified while

discussing the reality of the parameters. Furthermore, the expression for the transmission

amplitude is correct provided Γ(1 + ik) in the denominator is replaced by Γ(1 − ik). The

confusion apparently comes from a misprint in [23] although it was clarified in [15].

4 Rationally-extended supersymmetric partners of

PT -symmetric Scarf II potential

SUSY opens the window for the construction of various types of solvable potentials [24, 25,

26], including the recently proposed class of completely solvable rationally-extended ones

[17, 27, 28, 29, 30, 31, 32, 33]. Here we report on another class of rational potentials defined

in (2), which are basically SUSY extensions of the complexified Scarf II potential (1). For

simplicity’s sake, we henceforth restrict ourselves to V2 > 0. Similar calculations could be

easily carried out for V2 < 0.
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With the superpotential given by

W (x) = a tanhx+ ib sech x−
i cosh x

i sinh x+ c
(29)

we find that V (x) and Vext(x) are supersymmetric partners in the usual sense [24, 25, 26],

i.e. V (x) ≡ V (+)(x) = W 2 −W ′ + E, Vext(x) ≡ V (−)(x) = W 2 +W ′ + E, provided the

parameters a and b are solutions of the coupled equations

a(a + 1) + b2 = V1, (2a+ 1)b = V2, (30)

c and E being

c = −
2b

2a− 1
, E = −(a− 1)2. (31)

The two equations in (30) can readily be combined to generate two corresponding ones

for a+ b and a− b:

(a + b)(a+ b+ 1) = V1 + V2, (a− b)(a− b+ 1) = V1 − V2. (32)

The solutions of (32) are real or complex conjugate according as the guiding discriminant

∆± = 1 + 4(V1 ± V2) is nonnegative or negative. In the case where V2 ≤ V1 +
1
4
, we get

∆+ > 0, ∆− ≥ 0, showing that a + b, a − b ∈ R implying a, b ∈ R. In the opposite case

V2 > V1 +
1
4
, we still have ∆+ > 0 but ∆− < 0 and as such a+ b ∈ R but a− b ∈ C. Hence

a, b ∈ C.

Let us consider the two cases in the same spirit as we did earlier for the complexified

Scarf II.

• V2 ≤ V1 +
1
4

Employing (3) we can express a, b and E as

a = −1
2
+ ǫ+p+ ǫ−s, b = ǫ+p− ǫ−s, E = −

(

ǫ+p+ ǫ−s−
3
2

)2
, (33)

where ǫ+, ǫ− = ±. It is obvious that according to the choice made for ǫ+ and ǫ−, we get

four different PT -symmetric extended partners.

The factorizing function is straightforward to derive and turns out to be

φ(x) ∝ (sech x)−
1

2
+ǫ+p+ǫ

−
s exp[−i(ǫ+p− ǫ−s) arctan(sinh x)]

× [ǫ+p− ǫ−s− i(ǫ+p+ ǫ−s− 1) sinh x].
(34)
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In the present case, we know that the spectrum of V (+)(x) is guided by two series of real

eigenvalues E
(+)
nǫ = Enǫ, given in equation (16), with the corresponding eigenfunctions

ψ(+)
nǫ (x) ∝ (sech x)−

1

2
+p+ǫs exp[−i(p− ǫs) arctan(sinh x)]P (−2ǫs,−2p)

n (i sinh x). (35)

Since P
(−2ǫs,−2p)
1 (i sinh x) = p− ǫs− i(p+ ǫs− 1) sinhx, we at once see that for ǫ+ = + and

ǫ− = ǫ, E = E
(+)
1ǫ and φ = ψ

(+)
1ǫ . Hence the corresponding partner potential has one level

less corresponding to this energy.

In contrast, for ǫ+ = −, φ(x) behaves as exp[(p−ǫ−s+
3
2
)|x|] → ∞ at x→ ±∞, whereas

φ−1(x) vanishes at infinity. The partner potential has therefore one additional level at the

energy E = −
(

p− ǫ−s+
3
2

)2
with a wavefunction in the form

φ−1(x) ∝ (sech x)
1

2
+p−ǫ

−
s exp[−i(p + ǫ−s) arctan(sinh x)]

× [−p− ǫ−s+ i(p− ǫ−s+ 1) sinh x]−1.
(36)

If ǫ− = −, this additional level lies below the two series of real eigenvalues E
(+)
nǫ . If ǫ− = +,

it always lies below the series corresponding to ǫ = −. However, it lies below the other series

associated with ǫ = + only if−
(

p− s+ 3
2

)2
< −

(

p+ s− 1
2

)2
or s < 1, i.e. V2 > V1−

15
16
. For

s ≥ 1, it may even coincide with E
(+)
n+ if −

(

p− s+ 3
2

)2
= −

(

p+ s− n− 1
2

)2
or 2s = n+2,

i.e. 1
4
+V1−V2 = (n+2)2. We therefore conclude that E = E

(+)
n+ if V2 = V1−

(

n + 3
2

) (

n+ 5
2

)

.

• V2 > V1 +
1
4

All we have to do here is to replace s by iq. The four different partners turn out to

be complex, non-PT -symmetric potentials. A little calculation shows that in all cases, the

partner potential has a finite number of pairs of complex conjugate energies and additionally

a single complex energy without complex conjugate counterpart. This is not surprising for

non-PT -symmetric potentials. Finally, since

ReE = −
[

(

p+ 3
2

)2
− q2

]

< ReE(+)
nǫ = −

[

(

p− n− 1
2

)2
− q2

]

, (37)

in the complex plane E is always well isolated at the left of the eigenvalues E
(+)
nǫ . So no

double degeneracy occurs as for the real case.

The bound-state wavefunctions ψ
(−)
nǫ (x) of the four different partner potentials V (−)(x) =

Vext(x) can be easily found from their counterparts ψ
(+)
nǫ (x) for the PT -symmetric Scarf II
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potential V (+)(x) by acting with the operator
(

E
(+)
nǫ −E

)−1/2
[

d
dx

+W (x)
]

in the usual

way [24, 25, 26]. In the next section, we will present the results obtained for one of the four

partners and prove from them the existence of spectral singularities for certain conditions

prevailing on its parameters.

5 Bound-state wavefunctions and spectral singulari-

ties of partners: a case study

Let us consider more specifically the partner corresponding to the choice ǫ+ = ǫ− = + and

distinguish between the two ranges of potential parameters again.

• V2 ≤ V1 +
1
4

The general form obtained for the partner wavefunctions reads

ψ(−)
nǫ (x) = N (−)

nǫ (sech x)ξ exp[η arctan(sinh x)][p−s− i(p+s−1) sinh x]−1Pnǫ(i sinh x), (38)

where the parameters ξ, η and the polynomials Pnǫ(i sinh x) are defined below.

If in equation (38) ǫ = +, then

ξ = −3
2
+p+s, η = −i(p−s), n = 0, 2, 3, . . . < p+s− 1

2

(

provided p+ s > 1
2

)

, (39)

and Pn+(y) are nth-degree polynomials somewhat reminiscent of other ones appearing in

the context of real potentials [34, 35]. The first two of them are given by

P0+(y) = 1,

P2+(y) = (p+ s− 1)(2p+ 2s− 3)y2 − 2(p− s)(2p+ 2s− 3)y + 2(p− s)2

− (p+ s− 1).

(40)

However, if ǫ = −, then

ξ = −1
2
+p−s, η = −i(p+s−1), n = 0, 1, 2, . . . < p−s−1

2

(

provided p− s > 1
2

)

, (41)

and

Pn−(y) = P̂
(2s−1,−2p+1)
n+1 (y) (42)
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are the (n + 1)th-degree Jacobi-type X1 exceptional orthogonal polynomials of Gómez-

Ullate et al [36], which were applied to Hermitian quantum mechanics in [17, 27] and latter

on generalized in [28, 29].

It can be easily checked that their behaviour as x→ ±∞ is given by

ψ(−)
nǫ (x) →N (−)

nǫ (±i)n+
1

2
(3−ǫ)2−

1

2
−n+p+ǫs(p+ s− 1)−1e∓i[p− 1

2
−ǫ(s− 1

2)]
π

2

× e±(n+
1

2
−p−ǫs)x,

(43)

so that they describe bound states. Their pseudo-norm N
(−)
nǫ could be expressed in terms

of that for the PT -symmetric Scarf II wavefunctions, N
(+)
nǫ .

• V2 > V1 +
1
4

The wavefunctions are given by equations (38)–(42) where we substitute iq for s. The

same replacement in equation (43) shows that they remain bound-state wavefunctions.

However, since the potential now breaks PT symmetry, the concept of pseudo-norm looses

its signicance.

In addition, we observe that if in the corresponding spectrum

E
(−)
n+ = −

(

p+ iq − n− 1
2

)2
, n = 0, 2, 3, . . . < p− 1

2

(

provided p > 1
2

)

,

E
(−)
n− = −

(

p− iq − n− 1
2

)2
, n = 0, 1, 2, . . . < p− 1

2

(

provided p > 1
2

)

,
(44)

we set p − 1
2
= n, then for n = 0, 2, 3, . . . , the two complex energy eigenvalues E

(−)
n+ and

E
(−)
n− collapse to the real and positive value E∗ given in (22), while for n = 1 there is a

single complex eigenvalue E
(−)
1− that becomes equal to the same. The associated conditions

(23) on V1 and V2 yield the relations

V ′
1 + V ′

2 = 4n2 − 1
4

(45)

connecting the coefficients V ′
1 = V1−2a, V ′

2 = V2−2b of the first two terms on the right-hand

side of (2).

Furthermore, it is straightforward to see that the wavefunction ψ
(−)
n− (x), which exists for

any n = 0, 1, 2, . . . , satisfies the asymptotic boundary conditions

ψ
(−)
n− (x) → N

(−)
n− (±i)n+22−iq

(

n− 1
2
+ iq

)−1
e∓i(n− 1

2
+iq)π

2 e±iqx (46)

as x → ±∞, hence is proportional to both Jost solutions. This again identifies E∗ as

a spectral singularity. We have therefore shown that for the considered partner, SUSY

preserves the existence of spectral singularities.
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6 Conclusion

To summarize, we have derived from the first principles the bound-state wavefunctions of

the complexified Scarf II potential and the associated energy levels. For a specific condition

on its underlying parameters holding, our results reveal the existence of an isolated real and

positive energy level that also coincides with the determination of the same from a recent

study of the poles of the transmission amplitude. However we identify it here as a spectral

singularity directly from the behaviour of the corresponding wavefunctions and we point

out some interesting property of the associated pseudo-norms.

We have also constructed new completely solvable rationally-extended partners to the

complexified Scarf II and we have solved for their spectrum. Depending upon the pre-

vailing conditions on the coupling parameters, our results point to either four different

PT -symmetric partners or complex non-PT ones. The behaviour of the associated energy

levels is shown to be much more complicated than those for the real potentials considered

in [17, 27]. As a case study we have explicitly constructed the wavefunctions for one of the

four partners and demonstrated the existence of a spectral singularity for the same real and

positive energy as that characterizing the complexified Scarf II potential, thereby showing

the preservation of this property under SUSY.
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