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AN OPERATOR ALGEBRAIC PROOF

OF AGLER’S FACTORIZATION THEOREM

SNEH LATA, MEGHNA MITTAL, AND VERN I. PAULSEN

(Communicated by Marius Junge)

Abstract. We give a short direct proof of Agler’s factorization theorem that
uses the Blecher-Ruan-Sinclair characterization of operator algebras. The key
ingredient of this proof is an operator algebra factorization theorem. Our proof
provides some additional information about these factorizations in the case of
polynomials.

1. Introduction

Given an analytic function f on the open unit disk D, Nevanlinna proved that
the supremum of f over the disk is less than or equal to one if and only if the

function 1−f(z)f(w)
1−zw

is a positive definite function on D. This latter condition is

equivalent to the existence of a positive definite function K : D2 → C which is
analytic in z and coanalytic in w such that 1− f(z)f(w) = (1− zw)K(z, w). Here
we are following the standard usage of calling a function positive definite if for every
choice of finitely many points, the matrix (K(zi, zj)) is positive semidefinite. Later
this result was generalized to a parallel result for analytic matrix-valued functions
on the disk whose supremum norm is less than or equal to one.

A remarkable extension of this result to more than one variable was given by
Agler [1]. To explain his result we need to first introduce the Schur-Agler space of
analytic functions on a polydisk. Given a natural number N and I = (i1, . . . , iN ) ∈
NN , we set zI = zi11 · · · ziNN so that every analytic function f : DN → C can be
written as a power series, f(z) =

∑

I aIz
I . If T = (T1, . . . , TN ) is an N -tuple of

operators on some Hilbert space H which pairwise commute and satisfy ‖Ti‖ < 1
for i = 1, . . . N, then we will call T a commuting N-tuple of strict contractions. It is
easily seen that if T is a commuting N -tuple of strict contractions, then the power
series f(T ) =

∑

I aIT
I converges and defines a bounded operator on H. The Schur-

Agler space, denoted by H∞
u (DN ), is defined to be the set of analytic functions on

DN such that ‖f‖u = sup{‖f(T )‖} is finite, where the supremum is taken over all
sets of commuting N -tuples of strict contractions and all Hilbert spaces. In fact,
the same supremum is attained by restricting to all commuting N -tuples of strict
contractions on a fixed separable infinite dimensional Hilbert space. It is fairly easy
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to see that H∞
u (DN ) is a Banach algebra in the norm ‖ · ‖u. The set of functions

with ‖f‖u ≤ 1 is called the Schur-Agler class.

Given a vector space V , we let Mm,n(V ) denote the set ofm×nmatrices with en-
tries from V. Given F = (fi,j) ∈ Mm,n(H

∞
u (DN )), we set ‖F‖u = sup{‖(fi,j(T ))‖},

where the supremum is again over all commuting N -tuples of strict contractions
and the norm of (fi,j(T )) is computed by regarding the operator matrix as an op-
erator from the direct sum of n copies of the Hilbert space to the direct sum of m
copies of the Hilbert space.

Note that when the Hilbert space is one-dimensional, then every commuting N -
tuple of strict contractions T is of the form T = z = (z1, . . . , zN ) ∈ DN , so that
‖f‖∞ = sup{|f(z)| : z ∈ DN} ≤ ‖f‖u and hence H∞

u (DN ) ⊆ H∞(DN ), where
this latter space denotes the set of bounded analytic functions on the polydisk
DN . When N = 1 or 2 it is known that these two spaces of functions are equal
and that ‖F‖u = ‖F‖∞, for all m and n. This is a consequence of theorems of
J. von Neumann [7], Sz.-Nagy [6] and Ando [3].

For N ≥ 3, it is known that these two norms are not equal. However, it is still
unknown, for a general N ≥ 3, if these two Banach spaces define the same sets
of functions, since by the bounded inverse theorem H∞

u (DN ) = H∞(DN ) if and
only if there is a constant KN such that ‖f‖u ≤ KN‖f‖∞. The existence of such a
constant is a problem that has been open since the early 1960’s. For more details
on all of these ideas one can see Chapters 5 and 18 of [8]. A note of caution: in
[1] it is stated that H∞

u (DN ) �= H∞(DN ) for N ≥ 3, but what is meant is that the
norms are not equal, and the question of whether or not they are equal as sets is,
indeed, still open.

Agler’s factorization theorem [1] says that F ∈ Mm,n(H
∞
u (DN )) with ‖F‖u ≤ 1

if and only if there exist positive definite matrix-valued functions Ki : D
N ×D

N →
Mm, i = 1, . . . , N, which are analytic in the first variables and coanalytic in the

second variables, such that Im − F (z)F (w)∗ =
∑N

i=1(1 − ziwi)Ki(z, w). When
m = n = N = 1, Agler’s result reduces to Nevanlinna’s factorization theorem since
in that case ‖F‖∞ = ‖F‖u by von Neumann’s inequality [7]. The book by Agler
and McCarthy [2] is an excellent source for further information and background on
this result.

In this paper we show that Agler’s factorization result is a direct consequence of
the factorization ideas of Blecher and the third author [4] arising from the abstract
theory of operator algebras. Our proof has the advantages of being relatively short,
assuming the abstract characterization of operator algebras [5], and of giving some
possibly new information on the form of the positive definite functions Ki that
appear in the Agler factorization. Our proof uses an observation of S. McCullough
that led to Theorem 4.

2. Main results

We let PN ⊆ H∞
u (DN ) denote the subspace spanned by the polynomials in N

variables endowed with the ‖ · ‖u norm. The equivalence of (i) and (ii) in the
following theorem is a reformulation of results found in [4] and in the book [8,
Chapter 18], but we will sketch a proof for clarity. The equivalence of (i) and (iii)
is a useful variant of Agler’s factorization result for polynomials.

It will be convenient to say that matrices A1, . . . Am are of compatible sizes if
the product A1 · · ·Am exists, that is, provided that each Ai is an ni×ni+1 matrix.
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Theorem 1. Let P = (pij) ∈ Mm,n(PN ). Then the following are equivalent:

(i) ‖P‖u < 1.
(ii) There exist an integer l, matrices of scalars Cj , 1 ≤ j ≤ l, with ‖Cj‖ < 1

and diagonal matrices Dj , 1 ≤ j ≤ l, each consisting of monomials in

one of the variables zij , which are of compatible sizes and are such that

P (z) = C1D1(zi1) · · ·ClDl(zi1).
(iii) There exist a positive, invertible matrix R ∈ Mm and matrices of polyno-

mials Pi, 0 ≤ i ≤ N, such that

Im − P (z)P (w)∗ = R+ P0(z)P0(w)
∗ +

N
∑

i=1

(1− ziwi)Pi(z)Pi(w)
∗

where z = (z1, ..., zN ), w = (w1, ..., wN ) ∈ DN .

Proof. The proof that (i) implies (ii) follows from either [4, Corollary 2.11] or
[8, Corollary 18.2], once one observes that Dl could be the identity matrix. To
illustrate how the abstract characterization of operator algebras is involved, we
outline a direct proof.

For each m,n ∈ N, one proves that ‖P‖m,n := inf{‖C1‖ . . . ‖Cl‖} defines a norm
on Mm,n(PN ), where the infimum is taken over all l and all ways of factorizing
P (z) = C1D1(zi1) · · ·ClDl(zil) as a product of matrices of compatible sizes with
scalar matrices Cj , 1 ≤ j ≤ l, and diagonal matrices Dj , 1 ≤ j ≤ l, whose diagonal
entries are monomials in one of the variables zij .

Moreover, one can verify that Mm,n(PN ) with this family {‖.‖m,n}m,n of norms
satisfies the axioms for an abstract unital operator algebra as given in [5]; hence
by the Blecher-Ruan-Sinclair representation theorem [5] (see also [8]) there exist
a Hilbert space H and a unital completely isometric isomorphism π : PN −→
B(H). Thus, for every m,n ∈ N and every P = (pij) ∈ Mm,n(PN ), we have
‖P‖m,n = ‖π(pij)‖. However, ‖π(zi)‖ = ‖zi‖1,1 ≤ 1, and so T = (π(z1), ..., π(zn))
is a commutingN -tuple of contractions. Thus, ‖P‖m,n = ‖(π(pij))‖ = ‖(pij(T ))‖ ≤
‖P‖u. This completes the proof that (i) implies (ii).

We will now prove that (ii) implies (iii). Suppose that P has a factorization as
in (ii). We will use induction on l to prove that (iii) holds.

First, assume that l = 1 so that P (z) = C1D1(zi1). Then,

Im − P (z)P (w)∗ = Im − (C1D1(zi1))(C1D1(zi1))
∗

= (Im − C1C
∗
1 ) + C1

(

I −D1(zi1)D1(wi1)
∗)

C∗
1 .

Since D1(zi1) is a diagonal matrix of monomials in zi1 , the (k, k)-th diagonal entry

of I −D1(zi1)D1(wi1)
∗ is 1− z

n1

k

i1
wi1

n1

k for some n1
k. Thus,

1− z
n1

k

i1
wi1

n1

k = (1− zi1wi1)(1 + zi1wi1 + · · ·+ z
n1

k−1
i1

wi1
n1

k−1)

= (1− zi1wi1)A
1
k(zi1)A

1
k(wi1)

∗,

where A1
k(zi1) = (1, zi1 , z

2
i1
, . . . , z

n1

k−1
i1

) is a 1 × n1
k matrix of monomials in zi1 .

Hence,

C1(1−D1(zi1)D1(wi1)
∗)C∗

1 = (1− zi1wi1)C1A1(zi1)A1(wi1)
∗C∗

1 ,

where A1(zi1) is the direct sum of the matrices A1
k(zi1). Therefore,

Im − P (z)P (w)∗ = R0 + (1− zi1wi1)Pi1(z)Pi1(w)
∗,
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where R0 = Im − C1C
∗
1 is a positive, invertible matrix and Pi1(z) = C1A1(zi1), so

the form (iii) holds when l = 1.
We now assume that the form (iii) holds for any P (z) that has a factorization

of length at most l − 1, and we also assume that

P (z) = C1D1(zi1) · · ·Dl−1(zil−1
)ClDl(zil) = C1D1(zi1)Pl−1(z),

where Pl−1(z) has a factorization of length l − 1.
Note that a sum of expressions like those on the right hand side of (iii) is again

such an expression. This follows from using the fact that given any two matrices A
and B, we can write

AA∗ +BB∗ = CC∗

where C = (A B).
Thus, it will be sufficient to show that Im − P (z)P (w)∗ is a sum of expressions

as above. To this end we have that

Im − P (z)P (w)∗ = (Im − C1D1(zi1)D1(wi1)
∗C∗

1 )

+ (C1D1(zi1))(I − Pl−1(z)Pl−1(w)
∗)(D1(wi1)

∗C∗
1 ).

The first term of the above equation is of the form as on the right hand side of (iii)
by the l = 1 case. Also, the quantity (I − Pl−1(z)Pl−1(w)

∗) is of this form by the
inductive hypothesis. Finally, note that if H(z, w) can be written as such a sum,
then so can Q(z)H(z, w)Q(w)∗; it then follows that the second term is also of the
required form.

Finally, we will prove that (iii) implies (i). Suppose (iii) holds. Then for any
commuting N -tuple of strict contractions T = (T1, . . . , TN ), by expanding both
sides in powers of T I(T ∗)J and comparing the coefficients of the power series, we
see that

Im − P (T )P (T )∗ = R+ P0(T )P0(T )
∗ +

N
∑

i=1

Pi(T )(I − TiT
∗
i )Pi(T )

∗.

Clearly, each term on the right hand side of the above inequality is positive, and
since R is strictly positive, say R ≥ δIm for some scalar δ > 0, we have that
Im − P (T )P (T )∗ ≥ δIm. Therefore (1 − δ)Im ≥ P (T )P (T )∗, which implies that
‖P (T )‖ ≤

√
1− δ. Thus, since T was arbitrary, ‖P‖u ≤

√
1− δ < 1, which proves

(i). �

Corollary 2. Let P = (pij) ∈ Mm,n(PN ). If ‖P‖u < 1, then there exist posi-

tive definite matrix-valued functions Ki : DN × DN → Mm, 0 ≤ i ≤ N, whose

components are polynomials such that

Im − P (z)P (w)∗ = K0(z, w) +
N
∑

i=1

(1− ziwi)Ki(z, w),

for all z, w ∈ DN .

Proof. Using the form in (iii), we set K0(z, w) = R + P0(z)P0(w)
∗ and Ki(z, w) =

Pi(z)Pi(w)
∗ for 1 ≤ i ≤ N. �

One of the advantages of the above factorization over Agler’s form is that, since
each positive definite function Ki consists of polynomials, the associated reproduc-
ing kernel Hilbert spaces will be finite dimensional spaces of Cm-valued polynomials.
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To see the connection between the factorization occurring in our (iii) and Agler’s
factorization, note that each of the termsKi(z, w) = Pi(z)Pi(w)

∗, i ≥ 2, is a positive
definite matrix-valued function that is analytic in the z variables and coanalytic in
the w variables. If we set

K1(z, w) =
R + P0(z)P0(w)

∗

1− z1w1
+ P1(z)P1(w)

∗,

then K1(z, w) is also a positive definite matrix-valued function that is analytic in z

and coanalytic in w and we have that Im − P (z)P (w)∗ =
∑N

i=1(1− ziwi)Ki(z, w).
Unfortunately, when written in this form, the reproducing kernel Hilbert space as-
sociated with this new function K1 will generally be an infinite dimensional Hilbert
space of analytic Cm-valued functions, even though P (z) was only polynomial val-
ued.

To pass from the above theorem for polynomials to the full version of Agler’s
theorem, we need to first show that functions in Mm,n(Hu(D

N )) have nice approx-
imations by matrices of polynomials. Note that if we write a matrix of analytic
functions F ∈ Mm,n(Hu(D

N )), F = (fi,j), as a power series F (z) =
∑

I AIz
I ,

where AI ∈ Mm,n are scalar matrices, then for any commuting N -tuple of strict
contractions we will have that F (T ) =

∑

AI ⊗ T I , where by the tensor product of
an m×n scalar matrix B = (bi,j) and an operator R ∈ B(H) we mean the operator
B⊗R = (bi,jR) from the direct sum of n copies of H to the direct sum of m copies
of H.

The following fact is also used in Agler’s proof [1].

Lemma 3. Given any factorization of the form Im − F (z)F (w)∗ =
∑N

i=1(1 −
ziwi)Ki(z, w) in Agler’s theorem, each of the functions Ki(z, w) satisfies

‖Ki(z, w)‖2 ≤ 1
(1−|zi|2)(1−|wi|2)

and hence is locally bounded on DN .

Proof. For z = (z1, . . . , zN ) ∈ DN , we have that

(1− |zi|2)Ki(z, z) ≤ Im − F (z)F (z)∗ ≤ Im;

hence ‖Ki(z, z)‖ ≤ 1
1−|zi|2

.

As each Ki is positive definite, using the positivity of the 2 × 2 block matrix
corresponding to the pair of points z, w ∈ D

N , we obtain

‖Ki(z, w)‖2 ≤ ‖Ki(z, z)‖ · ‖Ki(w,w)‖ ≤ 1

(1− |zi|2)(1− |wi|2)
.

This inequality shows that ‖Ki(z, w)‖ is bounded on (rDN ) × (rDN ) for any
0 < r < 1 and hence is locally bounded. �

Theorem 4. Take F ∈ Mm,n(H
∞
u (DN )) with F (z) =

∑

I AIz
I for z ∈ DN .

Then the sequence {Pn} of matrices of polynomials Pn(z) =
∑

|I|≤n(1−
|I|
n+1 )AIz

I

converges locally uniformly to F with ‖Pn‖u ≤ ‖F‖u for each n. Conversely, if

there is a sequence {Pn} of matrices of polynomials converging to F pointwise on

DN with ‖Pn‖u ≤ 1 for each n, then ‖F‖u ≤ 1.

Proof. Fix an n ∈ N and consider the Fejer kernel,

Fn(θ) =
1

n+1

∑n

k,l=0 e
i(k−l)θ for θ ∈ [0, 2π].
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Note that for each fixed z ∈ DN the function θ 
→ F (zeiθ) = F (z1e
iθ, . . . , zNeiθ)

is continuous. We define Pn(z) = 1
2π

∫ 2π

0
F (zeiθ)Fn(e

iθ)dθ for z ∈ DN , where
the integration is in the Riemann sense. A direct calculation shows that Pn(z) =
∑

|I|≤n(1−
|I|
n+1 )AIz

I , where |I| = i1 + · · ·+ iN .

Next check that for a fixed commuting N -tuple T = (T1, . . . , TN ) of strict con-
tractions on a Hilbert space H, the map θ 
→ F (T1e

iθ, . . . , TNeiθ) is continuous
from the interval into B(H) equipped with the norm topology. This follows from
the fact that since we are dealing with strict contractions, F (Teiθ) is a norm limit
of partial sums of its power series. It now follows that

Pn(T ) =
1
2π

∫ 2π

0
F (Teiθ)Fn(e

iθ)dθ,

where the integration is again in the Riemann sense.
Thus,

‖Pn(T )‖ ≤ 1

2π

∫ 2π

0

‖F (Teiθ)‖Fn(e
iθ)dθ ≤ ‖F‖u,

and we have shown that ‖Pn‖u ≤ ‖F‖u.
The fact that Pn converges to F locally uniformly is a standard result for scalar-

valued functions. To see this directly in our case, note that for z ∈ DN we have
that

Pn(z) =
∑

|I|≤n

(n+ 1− |I|)
n+ 1

AIz
I =

S0(z) + · · ·+ Sn(z)

n+ 1
,

where Sk(z) =
∑

|I|≤k AIz
I for k = 1, . . . , n, and hence Pn → F locally uniformly

on DN .

For the converse, let {Pn} be a sequence of Mm,n-valued polynomials with
‖Pn‖u ≤ 1 converging to F pointwise on DN . For each n, ‖Pn‖∞ ≤ ‖Pn‖u ≤ 1.
This implies that there exists a subsequence {Pnk

} which converges to a function
G ∈ Mm,n(H

∞(DN )) in the weak* topology and, hence, that {Pnk
} converges to G

uniformly on compact subsets of DN . Thus, G = F and {Pnk
} converges to F uni-

formly on compact subsets of DN . If we now take T = (T1, . . . , TN ) to be a commut-
ing N -tuple of strict contractions, then there is an r < 1 such that ‖Ti‖ ≤ r for all i.
Since the polynomials converge to F uniformly on the closed polydisk of radius 1+r

2 ,
it follows by the Riesz functional calculus that Pnk

(T1, . . . , TN ) −→ F (T1, . . . , TN )
in norm.

Therefore, ‖F (T )‖ = limk→∞ ‖Pnk
(T )‖ ≤ 1 and, hence, ‖F‖u ≤ 1. �

We can now prove Agler’s theorem.

Theorem 5 (Agler’s Factorization Theorem). Let F ∈ Mm,n(H∞(DN )). Then
‖F‖u ≤ 1 if and only if there exist positive definite functions Ki : DN × DN →
Mm, 1 ≤ i ≤ N, analytic in the first variable and coanalytic in the second variable,

such that

Im − F (z)F (w)∗ =

N
∑

i=1

(1− ziwi)Ki(z, w),

where z = (z1, . . . , zN ), w = (w1, . . . , wN ) ∈ D
N .

Proof. Let ‖F‖u ≤ 1. By Theorem 4, there exists a sequence {Pn} of matrices of
polynomials such that Pn converges to F locally uniformly on DN with ‖Pn‖u < 1
for each n.
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Since ‖Pn‖u < 1, by Theorem 1 and the remarks following it, there exist positive
definite functions Kn

i : DN × DN → Mm, 1 ≤ i ≤ N, analytic in the first variable
and coanalytic in the second, such that

Im − Pn(z)Pn(w)
∗ =

∑N

i=1(1− ziwi)K
n
i (z, w),

where z = (z1, . . . , zN ) and w = (w1, . . . , wN ).
Moreover, by Lemma 3, for each (z, w) ∈ DN × DN and for each n and i,

‖Kn
i (z, w)‖2 ≤ 1

(1−|zi|2)(1−|wi|2)
. So, for each fixed i ∈ {1, . . . , N} we have a locally

bounded sequence {Kn
i : n ∈ N} of analytic-coanalytic functions. Thus, each

of the m2 functions that make up the coefficients of the matrix-valued functions
Kn

i : DN × D
N −→ Mm is locally bounded.

Hence, applying Montel’s theorem (m2N times), there exist a subsequence {Knk

i }
and analytic-coanalytic functions Ki : D

N × DN → Mm, 1 ≤ i ≤ N , such that the
subsequence {Knk

i } converges to Ki locally uniformly on D
N × D

N . Since each
function in the subsequence is positive definite, it follows that each Ki is positive
definite. Taking limits, we have that

Im − F (z)F (w)∗ = lim
k
(Im − Pnk

(z)Pnk
(w)∗) =

N
∑

i=1

(1− ziwi)Ki(z, w).

The proof of the converse is identical to the argument given by Agler [1]. We briefly
recall it for completeness. Assume that we are given that

Im − F (z)F (w)∗ =

N
∑

i=1

(1− ziwi)Ki(z, w),

where each Ki is a positive definite Mm-valued function that is analytic in z and
coanalytic in w.

From the general theory of reproducing kernel Hilbert spaces, it follows that
there exist separable Hilbert spaces Hi, 1 ≤ i ≤ N , and analytic functions Fi :
D

N → B(Hi,C
m), 1 ≤ i ≤ N, such that Ki(z, w) = Fi(z)Fi(w)

∗ for 1 ≤ i ≤ N. For
those unfamiliar with this theory, let Hi be the reproducing kernel Hilbert space of
Cm-valued functions constructed from Ki and let Fi(z) : Hi → Cm be evaluation at
z. Choosing an orthonormal basis for Hi, one may regard Fi(z) as an m×∞ matrix
of analytic functions on D

N . One then verifies that for any commuting N -tuple of
strict contractions,

Im − F (T )F (T )∗ =

N
∑

i=1

Fi(T )(I − TiT
∗
i )Fi(T )

∗ ≥ 0,

and so ‖F (T )‖ ≤ 1. Since T was arbitrary, we have that ‖F‖u ≤ 1. �

As we showed in the above proof, each analytic-coanalytic positive definite func-
tion Ki : D

N × DN → Mm can be factored as Ki(z, w) = Fi(z)Fi(w)
∗, where Fi is

an m×∞ matrix of analytic functions on D
N . Often Agler’s factorization theorem

is written in this equivalent form, i.e., as

Im − F (z)F (w)∗ =

N
∑

i=1

(1− ziwi)Fi(z)Fi(w)
∗.
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