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Abstract

Extracting meaningful patterns from voluminous amount of biological data is a very big
challenge. Motifs are biological patterns of great interest to biologists. Many different versions
of the motif finding problem have been identified by researchers. Examples include the Planted
(I,d) Motif version, those based on position-specific score matrices, etc. A comparative study
of the various motif search algorithms is very important for several reasons. For example, we
could identify the strengths and weaknesses of each. As a result, we might be able to devise
hybrids that will perform better than the individual components. In this paper we (either
directly or indirectly) compare the performance of PMSprune (an algorithm based on the (I, d)
motif model) and several other algorithms in terms of seven measures and using well established
benchmarks

In this paper, we (directly or indirectly) compare the quality of motifs predicted by PM-
Sprune and 14 other algorithms. We have employed several benchmark datasets including the
one used by Tompa, et.al. These comparisons show that the performance of PMSprune is
competitive when compared to the other 14 algorithms tested.

We have compared (directly or indirectly) the performance of PMSprune and 14 other al-
gorithms using the Benchmark dataset provided by Tompa, et.al. It is observed that both
PMSprune and DME (an algorithm based on position-specific score matrices) in general per-
form better than the 13 algorithms reported in Tompa et. al.. Subsequently we have compared
PMSprune and DME on other benchmark data sets including ChIP-Chip, ChIP-seq, and ABS.
Between PMSprune and DME, PMSprune performs better than DME on six measures. DME
performs better than PMSprune on one measure (namely, specificity).

*This work has been supported in part by the following grants: NSF 0326155, NSF 0829916 and NIH
1R01GMO079689-01A1.



1 Introduction

Genomic sequencing allows the identification of nearly all of the genes in an organism, from which
the potential gene products can be inferred. However, genomic sequencing does not provide direct
information on the function of the individual gene products, nor their interrelationships. Motifs
provide clues on this function. Several computational approaches for identifying motifs can be
found in the literature. These techniques differ in how motifs are defined and modeled. Each
approach looks at a different facet of motifs. No single model or technique can identify all possible
motifs. The final verification, as to whether a motif is functional or not, can only be assessed
experimentally. Since experiments are expensive and time consuming, computational techniques
that can select potential functional motifs with high accuracy are desirable.

Many versions of motif search have been identified in the literature. Examples include planted
(¢, d) motif search (PMS), edit distance based motif search (EMS), and simple motif search (SMS).
These algorithms have a common theme. In particular, they look for substrings that are common
to many of the given input sequences. Algorithms based on these models have proven to be quite
useful in practice for solving problems such as the identification of transcription factor binding sites.
PMSprune [DBRO7] is an algorithm based on the (¢, d)-motif model that is currently known to solve
the largest challenging instances. Another important class of motif finding algorithms is based on
position-specific score matrices. These algorithms are based on identifying the statistical difference
between a substring and the background. Numerous papers have been written for motif search
based on these two and other techniques. It will be highly desirable to compare the various motif
search algorithms to identify the advantages and drawbacks of each technique. This comparative
study could lead to the discovery of better algorithms. A study of this kind has been conducted by
Tompa, et. al. [TLBT] who compared the performance of 13 different algorithms based on seven
measures. In this paper we add the comparison of two more algorithms to this list. These two
algorithms are PMSprune [DBR07] and DME [ASZ05] (an algorithm based on the position-specific
score matrices).

The (I, d)-motif Problem (LDMP): This problem takes as input n sequences each of length
m. Input also are integers ¢ and d. The problem is to find a motif M (a string of length ¢) that
occurs in each input sequence up to hamming distance of d.

Numerous algorithms have been developed to solve LDMP. LDMP algorithms can be categorized
into two, namely, exact algorithms and approximation algorithms. An exact algorithm (also called
an exhaustive enumeration algorithm) always finds the correct answer(s). On the other hand, an
approximation algorithm (also known as a heuristic algorithm) may not always output the correct
answer(s). Some examples of algorithms proposed for LDMP are Random Projection [BTO01],
MITRA [EP02], Winnower [PS00], Pattern Branching [PRP03], PMS1, PMS2, PMS3 [RBHO05],
PMSP [DBRO6], CENSUS [ES03] and Voting [CL05]. Out of these algorithms, CENSUS, MITRA,
PMS1, PMS2, PMS3, PMSP and Voting are exact algorithms.

Certain instances of LDMP have been identified to be challenging instances. In particular, an
(¢, d)-motif instance is said to be challenging if the expected number of motifs that occur in the
input by random chance is greater than or equal to one (when the input sequences themselves are
generated randomly). For example, the instances (9,2), (11,3), (13,4), and (15,5) are examples
of challenging instances. It is customary in the literature to show the performance of LDMP
algorithms only on challenging instances. It is always a challenge to solve as large a challenging
instance of LDMP as possible.

Pevzner and Sze [PS00] have proposed the WINNOWER algorithm. It generates a list of all



the [-mers present in the database and constructs a graph out of them. Each [-mer represents a
node and there is an edge between two nodes if the hamming distance between these two nodes is
at most 2d and they belong to different sequences. The problem of finding motifs is then reduced to
finding large cliques in this graph. The problem of finding a maximum clique in a graph is known
to be NP-hard. The authors use some novel pruning techniques to find large cliques. WINNOWER
uses a technique to generate Extendable Cliques. It is an iterative algorithm. The run time of this
algorithm is O(N?4*1), where N = nm. SP-STAR uses a technique which eliminates more edges
than WINNOWER and hence is faster. It uses less memory as well.

PatternBranching [PRPO03] performs a local search. It generates the neighbors of all ¢-mers
present in the sequences and uses a scoring method to assign scores for these neighbors. There are
n(m — [+ 1) f-mers presenting in the sequences. Each /-mer has (s) 3% neighbors. The scores of all
the neighbors of all the f-mers are computed and the best scoring neighbors are identified. Since
it searches through only a selected set of -mers, it is very efficient. This algorithm takes a u, and
then computes the best neighbor u; of u. In the next step it identifies the best neighbor uy of uy
and so on till it computes uy. The ug values for all possible u are computed and then the best
ug value becomes the output. In every step it keeps only one value of the best neighbor but there
could be a set of f~-mers which could be the best neighbors for w.

MITRA [EP02] is based on WINNOWER [PS00]. It uses pair wise similarity information. It
uses a mismatch tree data structure and splits the space of patterns into subspaces which start
with a given prefix. Pruning is applied to each of these subspaces. MITRA performs very well in
practice and is one of the best performing algorithms designed for Planted Motif Search Problem.

AlignACE [RHEC98] uses the whole genome RNA quanititation to identify genes that are most
responsive to environmental or genotypic change. Searching for mutually similar DNA elements
among the upstream non-coding DNA sequences of these genes, the candidate regulatory motifs and
corresponding candidate sets of co-regulated genes can be identified. This technique was applied
to three regulatory systems in yeast accharomyces cerevisiae: galactose response, heat shock, and
mating type. ANN-Spec [WS00] uses an Artificial Neural Network and a Gibbs Sampling Method
to define the Specificity of a motif. It searches for parameters that will maximize the Specificity of
the Binding sequence compared to the Background.

GLAM [FHSWO04] adds some useful enhancements to the Gibbs Sampling alignment method
like automatic detection of alignment width, calculation of statistical significance and optimization
of alignment by Simulated Annealing. The Improbizer [KLK101] searches for motifs in DNA or
RNA sequences that occur with improbable frequency (to be just chance) using a variation of the
expectation maximization (EM) algorithm. Oligo/dyad Analysis [vHRCV00] detects statistically
significant motifs by counting the number of occurrences of each word or dyad and comparing these
with expectation. The most crucial parameter is choosing the probabilistic model for the estimation
of occurrence significance. In this study, a negative binomial distribution on word distributions was
obtained from 1000 random promoter selections of the same size as the test sets.

QuickScore [RD04] uses an extended consensus method allowing well defined mismatches and
uses mathematical expressions for computing z-scores and P values. SeSIMCMC [ES03] consists of
two stages. In the first stage the weight matrix for a given motif and spacer length is optimized
and in the second stage looks for the best motif and spacer lengths for obtained motif positions. It
optimizes the common information of the motif and of distributions of motif occurrence positions.

Weeder [PMMPO04] is a consensus-based method where each motif is evaluated according to
the number of sequences it appears in and also on how well-conserved they are in these sequences.



YMF [ST03] performs an exhaustive search to find motifs with greatest z-scores. A p-value is used
to assess significance of the motif.

Several algorithms for PMS have been proposed in [RBHO05]. These are exact algorithms based
on radix sorting. The first algorithm proposed was PMS1. PMS1 simply generates neighbors of
all the f-mers present in a sequence and saves it in an array C;, where i is the sequence number.
It repeats this for all the sequences. The arrays are then sorted. The /-mers we get with the
intersection of all C;’s, where 1 < i < n, is the list of motifs. However, PMS1 is not capable of
solving challenging instances with large values of ¢. Some improvements have also been proposed
on PMS1 in [RBHO5]. Another algorithm proposed is PMS2 [RBHO05], which is capable of solving
challenging instances up to d = 4. For instance, it could not solve the Challenging instance (15, 5).
The third algorithm proposed in [RBH05] was PMS3 which was later implemented and is capable
of solving the challenging Instance (21, 8). Two new algorithms PMSP and PMSi were proposed
in [DBRO7] which were built upon PMS1 and perform a lot better than PMSI1.

PMSP [DBRO7] uses the idea of exploring the neighbors of all the ¢-mers that occur in the first
sequence and then checking if these represent a motif or not. The worst case time bound of this
algorithm is worse than that of PMS1 but in practice it performs much better. It is capable of
solving the challenging instance (17, 6).

PMSPprune [DBRO7] is another algorithm based on PMS1 and is an improvement over PMSP.
It uses a branch and bound approach. It shows significant improvements in terms of time taken
and is also capable of solving the challenging instance (19, 7). In this paper we use qPMSprune,
which is a special case of PMSprune to perform our tests.

DME (Discriminating Matrix Enumerator) was proposed in [ASZ05]. It uses an enumerative
algorithm to exhaustively and efficiently search a discrete space of matrices. Each matrix is scored
according to its relative over representation. A local search procedure is used to refine the highest-
scoring matrices, which optimizes the relative over representation score. As soon as a motif is
discovered, its occurrences are erased from the data and the procedure is repeated to discover
additional motifs. In Tompa, et al. [TLB™] 13 different motif finding algorithms have been tested
with respect to 7 different statistical measures. We have tested the performance of PMSprune and
DME over the benchmark datasets provided by Tompa, et.al. [TLBT]. Tt is observed that the
performances of PMS and DME are in general better than the 13 algorithms compared in [TLB™].
On six of the seven measures, PMSprune did better than DME. DME did better than PMSprune
on specificity. We have subsequently compared PMSprune and DME on additional datasets such
as ChIP-Chip, ChIP-seq, and ABS.

2 Methods

Tompa, et.al. [TLB™| posted a challenge for Motif Search Problem where each participant was
required to predict a single (or none) motif per dataset even though the 18 data sets have binding
sites for multiple motifs. 13 different algorithms for Motif Search participated in this challenge.
The results were evaluated using the benchmark data sets available at http://bio.cs.washington.edu/asses:
They have a collection of 56 datasets. In [TLB™] they have tested 13 different programs us-
ing several statistical measures. These programs are AlignACE, ANN-Spec, Consensus, GLAM,
The Improbizer, MEME, MITRA, MotifSampler, Oligo/dyad-analysis, QuickScore, SeSiMCMC,
Weeder and YMF.
We need to define some terms, before the seven statistical measures for testing the programs



can be explained.

e True Positives(TP): Number of positions in both known sites as well as predicted sites.

e False Positives(FP): Number of positions in predicted sites which are not present in known
sites

e True Negatives(TN): Number of positions which are neither in known sites nor in predicted
sites.

e False Negatives(FN): Number of positions that are in known sites but not in predicted
sites.

e Sensitivity(Sn): It represents the fraction of sites that were correctly predicted.
e Sensitivity(Sp): It represents the fraction of non-sites that were correct

e Positive Predictive Value(PPV): It represents the fraction of predicted sites that are
known.

The Sn, Sp and PPV measures are computed as follows (x can either be n for nucleotide or s
for site):

_ xT P

1 2Sn = 7 rN
_ T N

2 5P = Frprorp

— TP
3 PPV = srprarp

To compute the value for sSn, we label a site to be a true positive if there is at least a 25%
overlap between the predicted and the known sites.
Nucleotide level Performance Coefficient is defined as:

_ nT P
4 nPC = S7pr FNTaFP

Nucleotide level Correlation Coefficient is defined as:

5 NCOC = nTP.nTN—-nFN.nFP
— (nTP4+nFN)(RTN+nFP)(nTP+nFP)(nTN+nFN)

In this paper we compare the performance of PMSprune with the above 13 algorithms (indi-
rectly) and the DME algorithm on the Benchmark datasets in [TLB™]. Since a comparison of the
above 13 algorithms are already available, a comparison of PMSprune with these 13 algorithms has
been done using the results reported in [TLB™]

Definition 2.1. d(z,S;) = minycg, d(x,y), where y is an £-mer in S; and d(x,y) is Hamming
Distance between x and y.

Step 1 Find PMS Motifs.
Let M be the list of predicted Motifs from PMS algorithm such that length of M, |M| = m.



PMSSumMin: For each motif  in M, we compute the Score as follows. Score =
21<i<n AT, ).

After the score is computed for each x, the motifs are sorted based on Score. We choose
a subset M’ from PMS motifs using the following techniques.

Find MinScore = Minimum value of score out of Scores of all motifs .

All motifs that have Score = MinScore are added to the list M’.

PMSSumMin10: The top 10 motifs based on minimum Score is added to the list M’.
PMSSumMin500: The top 500 motifs based on minimum Score is added to the list M’.
PMSSumMinD: For each motif x in M, we compute the Score as follows. If (d(z, S;) < d),
then ScoreD = ScoreD + d(z,.S;).

After the score is computed for each x, the motifs are sorted based on Score. We choose
a subset M’ from PMS motifs using the following techniques.

Find MinScoreD = Minimum value of score out of ScoreD of all motifs z. All motifs
that have ScoreD = MinScoreD are added to the list M’.

PMSSumMinD10: The top 10 motifs based on minimum ScoreD are added to the list
M.

PMSSumMinD500: The top 500 motifs based on minimum ScoreD are added to the list
M.

Step 2 Find DME Motifs
The output from DME are the motifs, corresponding PWMs and a Score for each PWM.
Since, PMS outputs unique string motifs and DME motifs have some degenerate positions in

them, we open the DME motifs to generate a list of unique motifs and then choose a subset
D’ from all the DME motifs as follows:

DMESumMin: Let x5, xg...2x15 be the number of motifs of length 5 to 15 respectively
in PMSSumMin. We generate the list of DME motifs where the list has z, motifs of
length ¢, where 5 < £ < 15.

DMESumMinD: Let x5, z¢ ... 215 be the number of motifs of length 5 to 15 respectively
in PMSSumMinD. We generate the list of DME motifs where the list has z, motifs of
length ¢, where 5 < £ < 15.

DMESumMin10: The top 10 motifs out of all the motifs from DME are put into D’.
DMESumMin500: The top 500 motifs out of all the motifs from DME are put into D’.

BestDMESumMin: The best m motifs out of all the motifs from DME are included in
D', where m is the number of motifs in PMSSumMin.

BestDMESumMinD: The best m motifs out of all the motifs from DME are included in
D', where m is the number of motifs in PMSSumMinD.

Step 3 Compute Statistical Measures.
We compute the 7 statistical measures for each motif in all the 9 files generated. For each
dataset the computation is done as follows. Plant all the motifs occurring in the dataset with
a distance specified in Table 1 corresponding to the length of the motif. Pick one predicted
motif at a time from the file and plant it in the dataset using the distance specified in Table
1 corresponding to the length of predicted motif. Find the values of nTP, nFP, nFN, nFP,



sTP, sTN, sFP, sFN. Use these values to compute the 7 Statistical measures nSn, nSp, sSn,
nPPV, sPPV, nPC, and nCC.

Length(s) | Hamming Distance
5,6 1
6, 8 2
9,10, 11 3
12, 13, 14 4
15 5

Table 1: The (I,d) pairs used for testing

3 Results and Discussions

3.1 Result for Tompa’s dataset

We tested PMSprune and DME on ChIP-Chip, ChIP-Seq, ABS and Tompa’s datasets [TLB*]. Ta-
ble 2 shows the results for 13 algorithms that were initially evaluated in [TLB"]. The data for the ta-
ble was obtained from http://bio.cs.washington.edu/assessment/assessment_result.html .
The table shows the average values over all the datasets for all four species. It is observed that
ANN-Spec shows the best result based on Sensitivity which is 0.087 followed by Weeder with Sen-
sitivity as 0.086. Both PMSprune and DME perform better than these 13 algorithms on sensitivity
and other measures. However, when it comes to specificity, many of the 13 algorithms perform
better.

Algorithm nSn nSp sSn | nPPV | sPPV | nPC | nCC
AlignACE 0.0551 | 0.9914 | 0.0881 | 0.1118 | 0.1226 | 0.0383 | 0.0650
ANN-Spec 0.0870 | 0.9822 | 0.1551 | 0.0881 | 0.0848 | 0.0458 | nan

Consensus 0.0205 | 0.9968 | 0.0402 | 0.1132 | 0.1329 | 0.0176 | 0.0404
GLAM 0.0257 | 0.9872 | 0.0459 | 0.0381 | 0.0482 | 0.0156 | nan

The Improbizer 0.0685 | 0.9819 | 0.1226 | 0.0695 | 0.0836 | 0.0357 | nan

MEME 0.0670 | 0.9890 | 0.1111 | 0.1071 | 0.1394 | 0.0430 | 0.0706
MEME3 0.0776 | 0.9847 | 0.1245 | 0.0909 | 0.1348 | 0.0437 | nan

MITRA 0.0313 | 0.9906 | 0.0498 | 0.0623 | 0.0623 | 0.0213 | 0.0309
MotifSampler 0.0600 | 0.9901 | 0.0977 | 0.1069 | 0.1013 | 0.0399 | 0.0666
Oligo/dyad-analysis | 0.0398 | 0.9957 | 0.0727 | 0.1542 | 0.1214 | 0.0326 | 0.0694
QuickScore 0.0174 | 0.9889 | 0.0325 | 0.0301 | 0.0185 | 0.0111 | 0.0083
SeSIMCMC 0.0611 | 0.9685 | 0.0804 | 0.0369 | 0.0751 | 0.0235 | 0.0493
Weeder 0.0863 | 0.9960 | 0.1609 | 0.2996 | 0.2886 | 0.0718 | 0.1523
YMF 0.0639 | 0.9920 | 0.1206 | 0.1369 | 0.1200 | 0.0455 | 0.0815

Table 2: Results for 13 algorithms evaluated in Tompa et. al. [12]



3.2 Results for Tompa’s Database for PMSprune and DME

There are 56 datasets in the database used in [TLB*]. Due to limitations of DME and PMS we
could not test all the datasets. PMS does not work for datasets which have only one sequence in
them. Tables 3 and Table 4 show the 7 Statistical Measures for all the 9 Scoring methods we used.
The tables represent the values for the Best Motif that we found in Mus09r and Hm26r datasets,
respectively. From Table 2 it is observed that although the sensitivity of DME algorithm is very
good PMS performs better than DME in all the cases. The specificity for DME is better than PMS
in most of the cases but the difference is 1.5% or less.

Scoring Technique | nSn nSp sSn | nPPV | sPPV | nPC | nCC

PMS SumMin 0.6139 | 0.9227 | 0.6149 | 0.3240 | 0.9988 | 0.2692 | 0.4009
DME SumMin 0.4385 | 0.9354 | 0.5380 | 0.2907 | 0.9986 | 0.2118 | 0.3093
BestDME SumMin 0.4385 | 0.9354 | 0.5380 | 0.2907 | 0.9986 | 0.2118 | 0.3093
PMS SumMinD 0.7718 | 0.8910 | 0.7769 | 0.2993 | 0.9986 | 0.2750 | 0.4340
DME SumMinD 0.5788 | 0.8899 | 0.6659 | 0.2409 | 0.9983 | 0.2050 | 0.3161

BestDMESumMinD | 0.4385 | 0.9354 | 0.5380 | 0.2907 | 0.9986 | 0.2118 | 0.3093
PMS SumMin500 0.4386 | 0.9408 | 0.4167 | 0.3125 | 1.0000 | 0.2232 | 0.3251
PMS SumMinD500 0.4386 | 0.9408 | 0.4167 | 0.3125 | 1.0000 | 0.2232 | 0.3251
DME SumMin500 0.0877 | 0.9440 | 0.0833 | 0.0877 | 1.0000 | 0.0459 | 0.0327

Table 3: Result for Dataset Mus09r

Scoring Technique | nSn nSp sSn | nPPV | sPPV | nPC nCC

PMS SumMin 0.3889 | 0.8745 | 0.4970 | 0.2516 | 0.9999 | 0.1803 | 0.2184
DME SumMin 0.0658 | 0.9192 | 0.1265 | 0.0811 | 0.9995 | 0.0377 | -0.0166
BestDME SumMin 0.1020 | 0.9646 | 0.1383 | 0.2381 | 0.9992 | 0.0769 | 0.0987
PMS SumMinD 0.3889 | 0.8745 | 0.4970 | 0.2516 | 0.9999 | 0.1803 | 0.2184
DME SumMinD 0.0658 | 0.9192 | 0.1265 | 0.0811 | 0.9995 | 0.0377 | -0.0166

Best DMESumMinD | 0.1020 | 0.9646 | 0.1383 | 0.2381 | 0.9992 | 0.0769 | 0.0987
PMS SumMin500 0.3447 | 0.8695 | 0.4678 | 0.2229 | 1.0000 | 0.1565 | 0.1776
PMS SumMinD500 0.3447 | 0.8695 | 0.4678 | 0.2229 | 1.0000 | 0.1565 | 0.1776
DME SumMin500 0.0669 | 0.9663 | 0.0851 | 0.1777 | 1.0000 | 0.0511 | 0.0525

Table 4: Result for Dataset Hm26r

Table 5 compares the performance of results from all the 9 scoring techniques. We do the
comparison in the following manner: For each dataset we compare the 7 Statistical Measures for all
the 9 scoring techniques and find out which technique gave the best result for that measure. Then
we count the total number of times the scoring technique gave the best result for that Statistical
Measure. The numbers in Table 4 represent the count of best performance for each technique for
each measure. The sum of each column is 45 which is the total number of datasets that we tested.

Table 6 shows the average values of each statistical measure over all the datasets for all the 9
scoring techniques. It is observed that the average value of nucleotide as well as site Sensitivity for
PMS is better than DME. There is at least a difference of 8% or more for nSn and 10% or more



Scoring Technique | nSn | nSp | sSn | nPPV | nPC | nCC
PMS SumMin 18 0 16 8 13 7
DME SumMin 0 3 0 3 2 2
BestDME SumMin 1 5 1 1 0 0
PMS SumMinD 4 0 3 4 2 2
DME SumMinD 0 7 0 0 1 1
Best DMESumMinD 0 8 0 2 1 2
PMS SumMin500 18 1 20 13 20 11
PMS SumMinD500 4 0 5 6 3 7
DME SumMin500 0 21 0 3 12

Table 5: Best performers

for sSn. DME is better with respect to Specificity. The difference is no more than 3.5%. PMS is
better than DME based on the other 4 measures as well.

Scoring Technique | nSn nSp sSn | nPPV | sPPV | nPC | nCC

PMS SumMin 0.2586 | 0.9164 | 0.3483 | 0.3752 | 0.9997 | 0.1561 | 0.1843
DME SumMin 0.1638 | 0.9464 | 0.2332 | 0.3623 | 0.9994 | 0.1122 | 0.1385
BestDME SumMin 0.1715 | 0.9377 | 0.2419 | 0.3366 | 0.9993 | 0.1122 | 0.1280
PMS SumMinD 0.2880 | 0.9163 | 0.3695 | 0.3951 | 0.9996 | 0.1727 | 0.2100
DME SumMinD 0.1936 | 0.9420 | 0.2696 | 0.3715 | 0.9995 | 0.1245 | 0.1566

Best DMESumMinD | 0.1863 | 0.9346 | 0.2626 | 0.3495 | 0.9993 | 0.1220 | 0.1409
PMS SumMin500 0.2322 | 0.8961 | 0.3117 | 0.3809 | 0.9778 | 0.1476 | 0.1674
PMS SumMinD500 0.2349 | 0.8959 | 0.3160 | 0.3842 | 1.0000 | 0.1487 | 0.1687
DME SumMin500 0.1048 | 0.9302 | 0.1485 | 0.2802 | 0.8224 | 0.0747 | 0.0748

Table 6: Average of all datasets for Best Results

3.3 ChIP-Chip Results

We used the publicly available database for ChIP-Chip available at http://bdtnp.1bl.gov/Fly-Net/browseChipj
. Since some datasets are very large we only use the datasets which have less than 500 sequences

and length of motifs are less than or equal to 15. A summary of the results can be found in Table
7.

3.4 ChIP-Seq Results

We used the Human database for the ChIP-Seq results. It consisted of 24 files (Chrl - Chr22,
ChrX, ChrY). Since the datasets were large, we just sampled a small subset of sequences. 20% of
the total number of sequences were chosen at random and all motifs which occur in at least half the
sequences are chosen by PMS. The motif and the locations in the sequences are available and we

used that information to find where the truth occurred. The comparison results are summarized
in Table 8.



Scoring Technique | nSn nSp sSn | nPPV | sPPV | nPC nCC
PMSSumMin 0.1464 | 0.8304 | 0.2254 | 0.3799 | 1.0000 | 0.1168 | 0.1463
PMSSumMinD 0.1575 | 0.8148 | 0.2322 | 0.3603 | 1.0000 | 0.1058 | 0.1143
PMSSumMin500 0.1441 | 0.8351 | 0.2253 | 0.3883 | 1.0000 | 0.1169 | 0.0762
PMSSumMinD500 0.1181 | 0.8944 | 0.1848 | 0.4314 | 1.0000 | 0.1003 | 0.0277
PMSSumMin10 0.1667 | 0.8342 | 0.2481 | 0.4181 | 1.0000 | 0.1364 | 0.112
PMSSumMinD10 0.1278 | 0.8928 | 0.1890 | 0.4328 | 1.0000 | 0.1089 | 0.1275
DMESumMin 0.1416 | 0.8717 | 0.2025 | 0.4118 | 1.0000 | 0.1193 | 0.0422
DMESumMinD 0.1485 | 0.8741 | 0.2079 | 0.4300 | 1.0000 | 0.1265 | 0.0608
DMESumMin500 0.1282 | 0.8833 | 0.1918 | 0.4232 | 0.9997 | 0.1077 | -0.02588
DMESumMin10 0.1546 | 0.8855 | 0.2138 | 0.4553 | 1.0000 | 0.1339 | 0.0475

Table 7: Average Results for ChIP-Chip database

Scoring Technique | nSn nSp sSn | nPPV | sPPV | nPC nCC
PMSSumMin 0.1554 | 0.8613 | 0.2458 | 0.2086 | 0.9999 | 0.0977 | 0.1554
PMSSumMinD 0.1339 | 0.8923 | 0.2142 | 0.2195 | .9999 | 0.08176 | 0.1793
PMSSumMinD500 0.1135 | 0.9061 | 0.1555 | 0.1896 | 0.9998 | 0.0639 | 0.0935
PMSSumMin500 0.1284 | 0.8802 | 0.2068 | 0.1879 | 0.9999 | 0.0776 | 0.1184
DMESumMin 0.1128 | 0.9121 | 0.1687 | 0.1365 | 0.9989 | 0.0453 | 0.1769
DMESumMinD 0.1043 | 0.8796 | 0.0618 | 0.1170 | 0.9999 | 0.0326 | 0.0429
DMESumMin500 0.1189 | 0.9361 | 0.1963 | 0.1376 | 0.9998 | 0.0960 | 0.0891

Table 8: Average Results for ChIP-Seq database

3.5 ABS Results

ABS gives us an option to choose the number of sequences, length of sequences, the Motif to be
planted along with the probability to plant the motif as an input. We generated datasets of 50
sequences with length 500 each and planted 1 motif with probability 1. Since, ABS plants the motif
exactly in about 50% of the sequences, we generate the list M of PMS motifs by finding all motifs
which occur exactly in 20 out of 50 sequences. Table 9 presents a summary of the comparison.

Scoring Technique | nSn nSp sSn | nPPV | sPPV | nPC | nCC
PMS 0.1934 | 0.9104 | 0.2298 | 0.5275 | 1.0000 | 0.1783 | 0.2168
DME 0.1485 | 0.9148 | 0.1650 | 0.3187 | 1.0000 | 0.1256 | 0.1797

Table 9: Average Results for ABS database

4 Conclusions

In this paper we have compared PMSprune, one of the best known exact algorithms based on the
(I,d) motif model, with 14 other algorithms. In particular, we have employed the 13 algorithms



reported in [TLBT] and DME. These algorithms have been compared based on seven different
statistical measures. This comparison shows that PMSprune is very competitive with the other 14

algorithms.
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