
DOI: 10.1007/s00453-001-0042-6

Algorithmica (2001) 31: 179–207

Algorithmica
© 2001 Springer-Verlag New York Inc.

An Efficient Output-Size Sensitive Parallel Algorithm
for Hidden-Surface Removal for Terrains

N. Gupta1,2 and S. Sen1

Abstract. We describe an efficient parallel algorithm for hidden-surface removal for terrain maps. The algo-

rithm runs in O(log4 n) steps on the CREW PRAM model with a work bound of O((n + k) polylog(n)) where

n and k are the input and output sizes, respectively. In order to achieve the work bound we use a number of tech-

niques, among which our use of persistent data structures is somewhat novel in the context of parallel algorithms.

Key Words. Parallel algorithms, Hidden surface elimination, Output-sensitive, Data structure, Terrain.

1. Introduction

1.1. The Problem. The hidden-surface elimination problem (see [SSS] for the early

history) has been a fundamental problem in computer graphics and can be stated as: given

n polyhedral faces in R
3 and a projection plane, we wish to determine which portions of

the faces are visible when viewed in a given direction. We are interested in an object–

space solution (independent of the display device) for this problem. That is, we are

interested in a combinatorial description of the visible scene which can then be rendered

on any display device. The image–space solutions compute the visibility information at

every pixel which makes them device dependent. It has been shown that the worst-case

output size for hidden-surface elimination can be �(n2) for n segments, and, hence, the

worst-case optimal algorithms for these problems will have a running time of �(n2).

A slightly different version is the hidden-line elimination problem, where we are

concerned only with the visibility of the edges (not regions). The algorithms for hidden-

surface removal can be easily modified for the hidden-line elimination case. There are

algorithms for hidden-line elimination in the literature whose running times are sensitive

to the number of intersections, I , (of the projections of the segments) in the image plane.

However, in practice, the size of the displayed image can be far less than the number

of intersections in the image plane. By size, we mean the number of vertices and edges

of the displayed image as a (planar) graph. This would happen when a large number

of these intersections are occluded by the visible surfaces (see Figure 1). We study a

special class of surfaces called polyhedral terrains which occur frequently in practice.

A terrain is a three-dimensional polyhedral surface which can be represented as a function

1 Department of Computer Science and Engineering, Indian Institute of Technology, New Delhi 110016, India.

{neelima,ssen}@cse.iitd.ernet.in.
2 Present address: Hansraj College, University of Delhi, Delhi 110007, India.

Received July 29, 1998; revised October 5, 1999. Communicated by F. P. Preparata.

Online publication July 19, 2001.

180 N. Gupta and S. Sen

Fig. 1. The visible scene has only constant complexity whereas the number of intersections is �(n2).

of two variables (see Figure 2). Most geographical features can be represented in this

manner. A large number of scenes in graphics applications can be modelled efficiently and

effectively by polyhedral terrains. The term (upper) profile refers to the piecewise linear

function Z(y), which is the pointwise maximum in the +z direction of the projection

of edges onto the z–y plane. Other commonly used terms for upper profile are upper

envelope and silhouette. Therefore, a profile is a monotone polygon with respect to

the y-axis. In fact, monotonicity turns out to be a very useful property in making the

algorithm somewhat simpler than hidden-surface removal algorithm for general surfaces.

However, even for terrains, it is known whether the maximum size of the visible image

can be �(n2). Our aim is to design a fast output-sensitive3 parallel algorithm for terrains,

which computes a description of the output in a device-independent manner.

1.2. Sequential Algorithms. McKenna [M] and Devai [D] proposed algorithms for the

general problem that run in O(n2) time, and, hence, are worst-case optimal. There are

algorithms for hidden-line elimination whose running times are sensitive to the number

of intersections, I , (of the projections of the segments) in the projection plane, typically

of the order of O((n + I) log n) (for example, see [N] and [S]). This was improved to

O(n log n + I + t) by Goodrich [G] where t is the number of intersecting polygons in

the image plane.

Fig. 2. A typical terrain map.

3 We often use the shorter term output-sensitive instead of output-size sensitive.

An Efficient Output-Size Sensitive Parallel Algorithm 181

The first known efficient output-sensitive algorithms were designed for the restricted

input-class consisting of iso-oriented rectangles in R
3 [GO], [Be], [AGO]. For the class

of polyhedral terrains, Reif and Sen [RS1] designed the first efficient algorithm whose

running time is O((k + n) log2 n) where k is the output size. Preparata and Vitter [PV]

presented an algorithm with the same running time and claimed that their algorithm was

simpler. The algorithm in [OKS] improved the running time to O((nα(n) + k) log n)

where α(n) is the inverse Ackerman’s function. For the case of nonintersecting objects

there are algorithms which are somewhat output sensitive—for example, the algorithm

of Overmars and Sharir [OS] takes about O(n
√

k log n) steps given an ordering of the

objects. de Berg et al. [dBHO+] and Agarwal and Matousek [AM] obtain improved

bounds without an initial ordering for nonintersecting objects. However, these are still

far away from the ideal bound of ((n + k) polylog(n)).

1.3. Parallel Algorithms. The primary objective of designing parallel algorithms is

to obtain very fast solutions to problems, keeping the total work (the processor–time

product) close to the best sequential algorithms. For example, if S(n) is the best known

sequential time complexity for input size n, then we aim for a parallel algorithm with

P(n) processors and T (n) running time to minimize T (n) subject to keeping the product

P(n) ·T (n) close to O(S(n)). A parallel algorithm that actually does total work O(S(n))

is called a work optimal algorithm.

Relatively little work has been done in the context of parallel algorithms for hidden-

surface removal. Reif and Sen [RS1] had proposed a parallelization of their algorithm

with O(log4 n) running time in a model that is stronger than PRAM. The more challeng-

ing theoretical goal was to keep the work bound close to the output-sensitive sequential

algorithm. The resulting algorithm was quite complex and required parallel (dynamic)

updates on a shared nested data structure that were not only hard to implement but also

difficult to analyze. Here, we exploit some of their ideas but adopt a different strategy

to build the parallel data structure. The resulting algorithm is relatively simpler and also

easier to analyze. The main reason for this is that the underlying data structure is static

although it has to be rebuilt a (small) number of times. Our bounds are also superior

in the sense that we are able to match the bounds of [RS1] in a standard PRAM model

(processor allocation was assumed to be free in the model used by [RS1]).

Goodrich et al. [GGB] presented parallel algorithms for hidden-surface elimination.

For the general scenes, their algorithm computes all the I pairwise intersections on the

projection plane. For the case of iso-oriented rectangles in R
3, their algorithm is output-

sensitive and runs in O(log2 n) time using O((n + k) log n) total parallel operations.

The crux of their method is a parallel data structure called array-of-trees introduced by

Kosaraju et al. [KAG], that has some flavor of persistent data structures. In this paper

we make more direct use of persistent data structures in our parallel algorithm.

We are not aware of any other published work in the context of provably efficient

output-sensitive parallel algorithms for more general surfaces. The importance of output-

size sensitivity for parallel algorithms cannot be overemphasized for the following simple

reason. The advantage of using extra processors will be lost otherwise (for small output

size) compared with an efficient output-sensitive sequential algorithm. The rest of the

paper is organized as follows. In Section 2 we give a brief overview of our approach.

In Section 3 we describe some of the basic parallel routines used frequently in the main

182 N. Gupta and S. Sen

algorithm. Section 4 forms the crux of the paper. Since the algorithm is somewhat

involved, we give a top-down description of the algorithm and the data structures ac-

companied by analysis.

2. An Overview of Our Algorithm. Recall from the Introduction that terrains in this

paper refer to piecewise linear surfaces which meet a vertical line in exactly one point.

Assume that the surface is a function z = f (x, y), it is being viewed from x = ∞, and

the viewing plane is the z–y plane. We are viewing the scene in a direction perpendicular

to the projection plane, however, the algorithm works for the perspective projection as

well. A characteristic of these surfaces is that the upper boundary of the projection of the

line segments on the z–y plane is monotone with respect to the y-axis. We assume that

the terrain is available as a graph G whose vertices are 3-tuples (x, y, z) of coordinates

such that z = f (x, y) and whose edges correspond to the segments of the polyhedral

surface. The terms edges and segments have therefore been used interchangeably. We

also assume that only the top part of the surface is visible, i.e., the faces closest to the

observer rise from the ground level. A key property that allows one to solve the visibility

problem efficiently is that the edges can be ordered from “front” to “back” using the

following observation. Project G onto the x–y plane (call it Gxy) and now the ordering

of the segments in the scene in the increasing distance from the viewer corresponds to

the ordering of the edges of Gxy along x . That is, we can define a partial order on the

edges as follows: edge ei ≺ ej if there is a ray in the viewing direction that intersects ei

before ej . The projection of the edges on the x–y plane preserves this ordering.

2.1. A Sequential Approach. In the sequential algorithm the edges are ordered in the

increasing distance from the viewer by decomposing Gxy into monotone chains of edges.

DEFINITION. A chain C = (u1, u2, . . . , up) is a planar straight line graph (PSLG) with

vertex set {u1, . . . , up} and edge set {(ui , ui+1), i = 1, . . . , p − 1}. A chain is called

monotone with respect to a straight line l if a line orthogonal to l intersects C in at most

one point.

The edges are processed one by one sequentially in order. The algorithm maintains

an upper profile of the edges processed so far and tests the visibility of the next edge

being processed by determining its intersection with the current profile. Since the edges

are processed in the order of increasing distance from the viewer, the profile lies in front

of the next edge and therefore occludes the portion of the edge which lies behind it. Thus

the portion of the projected edge lying below the profile (which is a simple monotone

polygon) is not visible and hence is discarded (see Figure 3(a), the dotted portion of the

edge is not visible). The upper profile is updated with the visible portions of the edge

(see Figure 3(b)). Clearly, the portion of an edge declared visible is visible in the final

image (i.e., it cannot be occluded by edges processed later). Some vertices and edges of

the profile may be deleted at this point which only means that they are no longer part

of the “upper boundary” of the final image but they are very much visible in the final

image and therefore are remembered. Finally, we have all the vertices and edges of the

final image which can be used by the rendering procedure to draw it on the screen.

An Efficient Output-Size Sensitive Parallel Algorithm 183

(a)

(b)

Fig. 3. The dotted part of the segment s lies below the profile p and hence is not visible, therefore it is discarded.

2.2. An Overview of the Parallel Algorithm. In the parallel scenario the above sequen-

tial algorithm has two major stumbling blocks. First, the edges are processed sequentially

and the upper profiles are computed incrementally. We overcome this problem with the

help of a separator tree and computing profiles using an approach similar to systolic

implementation of parallel prefix computation. A separator tree provides a way to order

the edges in the increasing distance from the viewer in parallel and also allows one to

process them concurrently. Second, the intersections of an edge with a profile are com-

puted sequentially. We use the divide-and-conquer approach to detect the intersections

efficiently in parallel. We order the edges using a separator tree (described later). Let

e1, e2, . . . , en be the ordered set of input edges. Let Pi denote the i th profile, i.e., the

upper profile of the edges e1, e2, . . . , ei . Our aim is to compute Pi , ∀i = 1, . . . , n. We

call them actual profiles (however we omit “actual” most of the time and mention it only

if it is not clear from the context).

We compute these profiles in two phases. In phase 1 we compute in parallel, for

all the nodes of the separator tree, the upper profile of the edges in the leaves of the

subtree rooted at the node (the edges in the leaves of the separator tree are sorted in the

increasing distance from the viewer). Call the resulting tree the profile computation tree

(henceforth referred to as the PCT). Notice that these profiles are not the actual profiles

we are looking for. These are only intermediate profiles which are used to compute the

actual profiles (think of the internal nodes in the prefix computation tree) in phase 2.

In phase 2 we compute the actual profiles using an approach similar to the systolic

implementation of parallel prefix computation [LF] (see Figure 4). Starting from the

root of the profile computation tree the computation proceeds toward the leaves level by

level. In this phase, at any node, the computation involves “merging” two profiles—an

(actual) profile inherited from its parent and an (intermediate) profile computed in the

previous phase by one of its children.

Merging is done by finding the intersections of the segments of the intermediate profile

with the other profile and updating the other profile. However, as we will see later, our

visibility structure (i.e., the vertices of the profiles) may be shared among different nodes

at the same level of the PCT. We cannot afford to keep these profiles totally independent

184 N. Gupta and S. Sen

Fig. 4. An illustration of systolic implementation of parallel prefix sum computation. (a) Phase 1: computation

proceeds bottom-up. (b) Phase 2: computation proceeds top-down.

of each other because that will jeopardize our main objective of designing an output-

sensitive algorithm. Instead of keeping a visibility structure for each profile at a fixed level

of the PCT we keep just one structure maintaining information about all the intersections

computed so far and also provide a search structure to detect the intersections at the next

level of the PCT.

REMARK. Our algorithm follows the basic approach of Reif and Sen [RS1]; however,

our implementation of the merging phase is considerably simpler. One of the (sequential)

algorithms of Overmars et al. [OKS] also follows a very similar approach. However, they

avoid dynamic ray-shooting and implement merging in terms of various set operations

(like intersection and differences) that leads to savings of a logarithmic factor in running

time.

3. Some Basic Parallel Routines. Before we describe the parallel algorithm in details,

we briefly review some of the basic parallel routines that are used frequently in our

algorithm.

LEMMA 3.1 [SV]. Two sorted lists of sizes M and N can be sorted in O(log(M + N))

time using (M + N)/log(M + N) processors.

DEFINITION. Suppose there are n tasks and the i th task requests xi processors such that∑n
i=1 xi = O(n). Then the processor allocation problem of size n is to allocate a given

set of processors among these tasks so that the i th task is alloted xi processors (for all i).

LEMMA 3.2 [LF], [R]. The processor allocation problem of size n can be solved in

O(max{n/p, log n}) time with p processors on an EREW PRAM.

An Efficient Output-Size Sensitive Parallel Algorithm 185

DEFINITION. Given a bit vector of size n, the problem of compaction involves deleting

the 0’s and putting the 1’s in contiguous locations starting from the first location.

LEMMA 3.3 [LF], [R]. The compaction problem of size n can be solved in O(max{n/p,

log n}) time with p processors on the EREW PRAM.

LEMMA 3.4. Given a convex polygon P of size m and a ray r , one can detect the

intersection of r and P (or report that there are none) in O(log m) time sequentially.

We shall also need frequent applications of the slow-down lemma which (in our context)

can be formally stated as follows. Let tp,r denote the time to allocate p processors to a

number of tasks whose total processor requirement is O(r). That is tp,r is the time to

solve the problem of processor allocation of size r with p processors.

LEMMA 3.5. Let A be a parallel algorithm that executes in � phases and performs a

total number of N tasks (each task is not necessarily unit time but is performed by a

single processor). Then the algorithm can be executed in time O(�(tp,N + t) + Nt/p)

using p processors in a PRAM where t is the time taken for each task.

PROOF. This is a straightforward generalization of Brent’s slow-down lemma [Br] in

the context of PRAM algorithms. Let Ni be the number of tasks in phase i . Then the

tasks can be distributed equally among p processors so that no processor gets more than

⌈Ni/p⌉ tasks. Thus the total time is
∑�

i O(Ni t/p + tp,Ni
+ t), giving us the required

result.

LEMMA 3.6. Let A be a parallel algorithm that executes in � phases. Let Ni be the

number of tasks in phase i , each executes in O(ti) time with pi processors. Let t =
∑�

i=1 ti
and N = maxi {Ni pi }. Then the algorithm can be executed in O(�tp,N + t + Nt/p)

time with p processors.

PROOF. This is a further generalization of the above lemma. Consider phase i of the

algorithm A. Let p < Ni pi . Let p′
i = p/pi . Divide the Ni tasks in p′

i groups each of size

O(Ni/p′
i). Distribute p processors equally among these groups so that each group gets

pi processors. Execute the tasks in each group one by one. The time in phase i is thus

O(Ni ti/p′
i + tp,Ni pi

) = O(Ni pi ti/p + tp,N) = O(Nti/p + tp,N). However, if p ≥ Ni pi ,

then the time in phase i is O(ti). Thus the total time in phase i is O(max{Nti/p+tp,N , ti }).
The total time over all the phases is O(max{N

∑�
i=1 ti/p + �tp,N ,

∑�
i=1 ti }) giving us

the required result.

4. The Parallel Algorithm. We describe the algorithm in a top-down manner, treating

the important steps in individual subsections accompanied by detailed analysis. Given a

two-dimensional surface as a straight line graph in three dimensions, we project the line

segments on the x–y plane. By the property of terrain maps, no two projected segments

will intersect. If the graph is not triangulated, we triangulate the graph using the algorithm

of Atallah et al. [ACG] for parallel triangulation. Since it is a planar graph, the number

186 N. Gupta and S. Sen

Fig. 5. Construction of a separator tree for a monotone subdivision: (a) Monotone subdivision S with the

separator chains visualized. (b) Separator tree for S.

of edges and faces is still O(n). Henceforth our discussions will be with respect to the

triangulated graph. The main steps of the algorithm are:

1. Order the edges of the triangulated graph as follows: The triangulated graph is

partitioned into roughly equal parts by a separator—a chain of edges monotone with

respect to the y-axis. This is repeated recursively on each part until each part has a

constant number of edges. This is done with the help of a separator tree (see Figure 5).

Separator chains are ordered from front to back. Each edge e belongs to a range of

separators {σj : i ≤ j ≤ k − 1}. Order the edges based on the smaller index of the

interval of chains it belongs to. That is, if edges e1 and e2 belong to σi , σi+1, . . . , σs

and σj , σj+1, . . . , σt , respectively, then e1 ≺ e2 if i ≤ j .

2. Profile computation

(a) Phase 1: Compute the intermediate profiles—to compute the profiles we take

the projection of the line segments on the z–y plane. For each node v in the

separator tree do in parallel: compute the profile of the edges in the leaves of the

subtree rooted at v. We call these profiles intermediate profiles. Note that these

are not necessarily part of the final visible scene. As mentioned earlier, we call

the resulting tree the profile computation tree (PCT). We use the term layer to

imply a level of the PCT. Observe that the segments of the profiles may be shared

among the layers of the PCT. For example, a profile at node v of the separator

tree may share segments with a profile at the left (or the right) child l of v since

the profile at l is the profile of the subset of edges of the set whose profile is

computed at v (see Figure 6).

(b) Phase 2: Compute the actual profiles—compute the actual (visible) profiles

starting from the root of the PCT, proceeding layer by layer toward the leaves using

an approach similar to the systolic implementation of parallel prefix computation.

This step constitutes the crux of our algorithm.

An Efficient Output-Size Sensitive Parallel Algorithm 187

Fig. 6. l is the left child of the node v in the PCT; the profile at l is the profile of the subset of edges of the set

whose profile is computed at v.

4.1. Constructing the Separator Tree. Let S be a planar subdivision whose regions

are monotone polygons. A separator tree is a balanced binary tree T on S as described

below. A separator σ of S is a monotone chain from −∞ to +∞. Let r1, r2, . . . , rm

be the regions of S, numbered such that i < j whenever region ri shares an edge with

rj and is to the left of rj . The common boundary of the regions with index ≤ i and of

the regions with index > i is a separator of S, which we denote by σi . Each leaf of

T represents a region of S, and each internal node represents a separator, such that the

inorder sequence of the nodes of T is given by r1, σ1, r2, σ2, . . . , σm−1, rm . Each edge

e of S belongs to a range of separators {σj : i ≤ j ≤ k − 1}, where ri and rk are the

regions to the left and right of e, respectively. For space efficiency, e is stored only once

at the least common ancestor σl of ri and rk in T , and is called a proper edge of σl . See

Figure 5. Step 1 of the main algorithm can be implemented in O(log n) time using a

linear number of processors in an EREW PRAM using a procedure due to Tamassia and

Vitter [TV]. Their result can be summarized as follows:

FACT 1. Let S be a planar triangulated subdivision with n vertices. Then the separator

tree consisting of monotone chains that decompose S can be constructed by an EREW

PRAM in O(log n) time using n processors.

4.2. Computing the Intermediate Profiles.

LEMMA 4.1. The profile of a set of m segments can be constructed in O(log2 m) time

using O(mα(m)/log m) processors in a CREW PRAM.

PROOF. This is done by dividing the set of segments in halves, computing the profiles

recursively for each half and merging the profiles as follows. Since the profile of m/2

segments can have size at most O(mα(m)) [CS] we merge the vertices of the profiles

in O(log m) time using O(mα(m)/log m) processors (Lemma 3.1). We label (for this

proof) a vertex “visible” if it is a part of the resultant profile and “invisible” otherwise.

Find the predecessor of a vertex of one profile in the other profile. This can be computed

while merging. From this we determine if the vertex is “visible” by checking if it lies

above the segment (in the other profile) whose left endpoint is its predecessor (see

Figure 7). The intersections can then be easily determined from the predecessor and

the visibility information within the required bounds (see Appendix A for details). The

points of intersections can be merged with the already merged set of vertices and the

vertices of the new profile can be compacted by discarding the “invisible” vertices. The

188 N. Gupta and S. Sen

Fig. 7. The predecessor of x1 (in p2) is y1 and it is visible because it lies above y1 y2. The predecessor of y2

(in p1) is x2 and it is invisible because it lies below x2x3.

required bounds follow from Lemmas 3.1 and 3.3. The total time bound follows from

the recursive application of the procedure.

Thus the profiles at all the nodes of the separator tree at a fixed layer can be computed

in O(log2 n) time using O(nα(n)/log n) processors in a CREW PRAM or step 2(a) can

be done in O(log2 n) time using O(nα(n)) processors in a CREW PRAM.

4.3. Computing the Actual Profiles. This step constitutes the crux of our algorithm.

The actual profiles are computed layer by layer of the PCT starting from the root down to

the leaves. Given the profiles and the data structure for intersection detection at a given

layer, say L , of the PCT, the profiles at the next layer are computed by computing the

intersections of the segments of some intermediate profiles with the actual profiles at the

layer L . Since this is a very long section, we have organized it as follows. In Section 4.3.1

we explain how to compute the first intersection of a segment (ray) with a profile. We

develop shared data structures based on the basic data structure of Chazelle and Guibas.

In Section 4.3.2 we explain how to compute all the intersections at the next layer of the

PCT by applying the following lemma.

LEMMA 4.2. Given the data structure for intersection detection of a profile P of size m

and a line segment s, we can find all the ks intersections of s with P in time O(max{(TI +
tp,ks

) log m, ks TI /p}) with p processors on a CREW PRAM, where TI is the sequential

time to detect the first intersection of a segment with P and tp,ks
is the time for processor

allocation of ks tasks using p processors.

PROOF. See Figure 8. Find the diagonal d of the profile such that the segment spans

roughly an equal number of diagonals on either side. This can be done by a simple binary

search for the endpoints of the segment and taking the middle diagonal of all the diagonals

spanned by the segment. We then divide the line segment into two subsegments—one

bounded by the left endpoint, say l, of s and the point of intersection, say t , of d and s

and the other bounded by the right endpoint, say r , of s and t , and apply the sequential

search (for an intersection) algorithm on both simultaneously (it is as if we have divided

the line in two rays in opposite directions). If an intersection is detected, say q , in

the right subsegment tr , we allocate an extra processor to the part of it between the

intersection point q and the original endpoint r of s and repeat the procedure recursively

on qr . Clearly, all the intersections will be detected in O(log m) stages. We call a

subsegment “alive” if an intersection is detected in it, else call it “dead.” An application

An Efficient Output-Size Sensitive Parallel Algorithm 189

Fig. 8

of compaction can be used to delete the dead subsegments at each stage. Let the number

of alive subsegments at the i th stage be si . Then, using si processors at the next stage, the

first intersection of these subsegments can be computed in O(TI) time and with p′ < si

processors they can be computed in O(si TI /p′) time by Brent’s slow-down lemma. The

time at stage i is therefore O(max{si TI /p, TI }) plus the time for processor allocation

and compaction with p processors. The number of alive subsegments at stage i is at

most twice the number of intersections detected at stage i − 1, i.e., si ≤ 2ki−1 for i ≥ 2,

where ki is the number of intersections detected at the i th stage, s1 = 2. The time taken

at stage i is therefore O(max{TI , tp,ks
, ki−1TI /p}) or the total time over all the stages is

O(max{(TI + tp,ks
) log m, (TI /p)

∑
i ki }) = O(max{(TI + tp,ks

) log m, ks TI /p}).

REMARK. Since the total number of tasks is O(ks) the above result also follows by a

direct application of Lemma 3.5.

4.3.1. Computing the first intersection of a segment with a profile. We organize this

section as follows. In Section 4.3.1.1, we review the data structure due to Chazelle and

Guibas (CG) which is the basic data structure used in our algorithm and also explain

how to compute the first intersection of a segment with a profile given appropriate data

structures with the CG data structure. In Section 4.3.1.2 we explain how to augment the

above data structure with some shared data structures to make it complete for intersection

detection. There we explain how to handle the shared visible portions of the profiles. In

Section 4.3.1.3 we combine the results of the above two subsections and complete the

construction of the data structure. This data structure stores the output vertices and also

provides a way to search the intersections at the next layer of the PCT.

4.3.1.1. Review of the data structure of Chazelle and Guibas. To detect the first

intersection between a segment and a profile (if an intersection exists), we use the data

structure of Chazelle and Guibas [CG] to represent the profile. We review it briefly as

required for our purpose. The sequential algorithm of Reif and Sen revolved around

making this data structure dynamic. Given a simple polygon P (which is monotone in

our case), we construct a binary tree where each node represents a portion of the polygon.

The size (number of vertices) of the polygons associated with each node decreases geo-

metrically with depth so that the tree has a logarithmic depth. The polygon is partitioned

into roughly equal-sized polygons (in our case) by dropping the vertical attachments

190 N. Gupta and S. Sen

(a) (b)

Fig. 9. (a) Profile P . (b) CG data structure for P .

called diagonals in the negative z-direction from all the vertices and choosing the mid-

dle one as a separator. Each node of the tree corresponds to a diagonal and the polygon

it partitions. This is repeated until constant-sized polygons are obtained. See Figure 9.

To detect an intersection between a line segment s and a polygon (upper profile) P the

following procedure is used: Suppose that we know a node v such that s intersects the

diagonal v (we use the same name for a node and the associated diagonal without any

ambiguity). From the point of the intersection of s with the diagonal v we move along

s in one direction, say toward the right. We would like to know the furthest diagonal

d which s can cross without intersecting (any edge of) P in between. Clearly, such a

diagonal lies in the right subtree of v. So we search for it in the right subtree of v going

down the subtree level by level. The search procedure is recursive and can be outlined

as follows:

Search d (v, right child r of v) if s does not intersect P between v and r , then (move

toward the right of r) Search d (r , right child of r) else (d must be in between v and r)

Search d (v, left child of r).

In the end either we conclude that there is no intersection (of s with P on the right side of

v) or a constant-sized polygon is obtained in which s intersects P . The intersection can

then be obtained in constant time. The intersections toward the left of v can be obtained

similarly.

The above procedure requires O(log|P|) phases, where |P| is the number of vertices

in P and in each phase it involves checking whether a ray intersects P between two

diagonals. For this we compute the lower convex chain of all the vertices of the poly-

gon between the two diagonals. Clearly, a ray intersects the polygon between the two

diagonals if and only if it intersects this convex chain. Whether a ray intersects a convex

chain can be determined by a simple binary search and hence it takes O(log|P|) time

(Lemma 3.4). The original data structure of CG was somewhat more complex based on

dual transforms. The above procedure is along the lines of Preparata and Vitter [PV] and

takes O(log2|P|) time. To facilitate the above search procedure Chazelle and Guibas

augment the above data structure with additional pointers that Reif and Sen referred to

as shooting pointers. A shooting pointer is added between a node v and its descendant

w if the diagonal v is in the boundary of the polygon associated with w, see Figure 9(b)

An Efficient Output-Size Sensitive Parallel Algorithm 191

where the shooting pointers are shown as dotted arcs. The following properties can be

easily verified for a monotone polygon:

PROPERTY 4.1. There can be at most two shooting pointers between a node v and its

descendants at a fixed level.

PROPERTY 4.2. There can be at most one shooting pointer between a node w and its

ancestors.

We refer to this structure of Chazelle and Guibas as the CG data structure in future. By

an edge of CG we imply either a tree edge or a shooting pointer unless explicitly stated

otherwise. We augment each edge ab of the CG data structure with the lower convex

chain of the vertices of the profile between a and b. We call the resulting structure an

augmented CG and refer to it as ACG hereafter.

LEMMA 4.3. For a profile with m vertices, we can construct the CG data structure in

O(max{log m, tp,m + m log m/p}) time using p processors on the CREW PRAM.

PROOF. A profile (which is monotonic) can be divided recursively into halves, quar-

ters, etc. Hence constructing the underlying CG tree is easy. Shooting pointers can be

determined as follows: a node v has a shooting pointer to every node in the rightmost

(respectively leftmost) branch of its left (respectively right) subtree. Hence at a fixed

level there are at most two nodes to which v has a shooting pointer. Moreover, any node

has at most one shooting pointer to its ancestors (mentioned above). Thus the CG data

structure can be constructed in O(log2 m) time using O(m/log m) processors or in the

required time using p processors from Lemma 3.5.

We defer the discussions on computing the convex chains for a while.

4.3.1.2. Representing shared visible portions. As mentioned earlier, we compute

the actual profiles using an approach similar to the systolic implementation of the par-

allel prefix computation. The main operation at every node being the “merging” of two

profiles—one actual profile inherited from its parent and the other an intermediate profile

precomputed in phase 1 of profile computation by one of its children. A crucial factor

here is the sharing of common visible segments between the profiles being computed

at different nodes of the same layer of the PCT. If we keep one ACG structure for each

profile this redundancy may multiply, leading to a very inefficient algorithm since we

have to build the data structure repeatedly on the same parts of the profile again and

again. The total number of computations during the course of the algorithm may turn

out to be several times larger than the output size, thus jeopardizing our initial objective

of designing an output sensitive algorithm. We tackle this problem as follows.

In phase 2 of the profile computation, at a fixed layer of the PCT, instead of keeping

an ACG structure for every profile, we keep a single ACG structure for all the profiles.

In other words, we keep all the intersections found up to a certain layer of the PCT in

one ACG, which provides a search structure to detect the intersections at the next layer.

That is, we construct CG on all the intersections found up to a certain layer, say L , of the

192 N. Gupta and S. Sen

Fig. 10

PCT using the procedure outlined in Lemma 4.3. To find the intersection(s) of a segment

s with a profile Pi we store the lower convex chain of the vertices of Pi between d1

and d2 for every edge d1d2 of CG. Since all the profiles computed up to a fixed layer of

the PCT participate in detecting the intersections at the next layer, we must therefore

keep a lower convex chain corresponding to each profile computed so far with every

edge of CG, so that the proper chain is searched for intersection at the next layer (see

Figure 10).

Convex chains are computed using divide-and-conquer. To compute the convex chain

of the set Vi (d1, d2) of the vertices of Pi between d1 and d2, divide Vi (d1, d2) into halves,

compute the convex chains recursively for each half and merge them as follows: let C1

and C2 be the convex chains of the halves. Define a lower common tangent between

them as the common tangent of C1 and C2 such that both C1 and C2 lie above it. We

omit “lower” in the following description. Let pq be the common tangent between C1

and C2. Then the convex chain of Vi (d1, d2) is obtained by deleting the parts of C1 and

C2 lying above pq and concatenating the remaining parts together with pq.

To construct the convex chain for Pi , we first construct a binary tree, denoted by

BT(Pi), which provides a skeleton to compute the convex chain recursively using divide-

and-conquer. BT(Pi) is thus a binary tree on Vi (d1, d2). We want to compute BT(Pi) for

each Pi . Here again we confront the problem of storing the common visible vertices that

An Efficient Output-Size Sensitive Parallel Algorithm 193

may be shared among the profiles. We cannot afford to keep multiple copies of a vertex.

Here, we use a shared data structure along the lines of a persistent binary tree structure

[DSST] to store BT(Pi) for all Pi . We denote this structure by PBT(d1, d2). Each node

of PBT(d1, d2) is labelled with an interval (called the time stamp) [a, b] if it belongs to

BT(Pi) for all i ∈ [a, b] such that Pi has been computed.

We start by labelling all the vertices between d1 and d2. To compute PBT(d1, d2) for

all the edges d1d2 of ACG, we must label all the vertices computed up to layer L of the

PCT. At a fixed layer of the PCT, a vertex is labelled with an interval [a, b] if it belongs

to Pi which has been computed for all i ∈ [a, b]. As mentioned earlier, the segments

may be shared between the intermediate profiles among the layers of the PCT (step 2(a),

Figure 6), therefore a vertex may be detected repeatedly as we go down the PCT. Thus,

we may have to update the labels of the vertices as we go down the PCT.

Below we explain how to label the vertices at a fixed layer of the PCT and how to

update them if required, as we go down the PCT.

4.3.1.2.A. Labelling the vertices. We label a vertex with an interval [i, j] if it was

detected in the i th profile Pi and deleted in Pj+1. If the vertex has not been deleted, then

j is a very big number, say M (> n2). When a vertex is created (detected for the first

time) in Pi it is labelled [i, M]. We update the labels of the vertices as we go down the

PCT as follows: Suppose at some node u of the PCT we compute Pj from Pi . Let x be

a vertex (created earlier) with label [l, r]:

1. If x is detected again in Pj (clearly, x is not a vertex in Pi for this case) and j < l,

then update the label to [j, r].

2. If x is a vertex of Pi and it is deleted by Pj , and j < r + 1, then update the label to

[l, j − 1].

Let πi j denote the intermediate profile which is merged with Pi to compute Pj . In

Figure 11 there may be a segment s belonging to πir , πis, and πi t .

EXAMPLE 1. Let v be an intersection of s with P24. It is labelled

(a) [28, M] at layer l2, assuming it has not been created earlier,

(b) updated to [26, M] at layer l3 if it is not deleted by P30 or to [26, 29] if it is deleted

by P30, and

(c) further updated to [25, M] or to [25, 29] respectively at layer l4.

EXAMPLE 2. Let w be a vertex with label [l, r] (l ≤ 24 and r > 27) in P24 which is

deleted due to s. Its label is updated to

(a) [l, 27] at l2,

(b) further updated to [l, 25] at l3, and

(c) then to [l, 24] at l4.

Thus, at a fixed layer of the PCT, the label [i, j] of a vertex just means that the vertex

is visible in all the profiles between and including Pi and Pj and not visible in other

profiles only at that layer of the PCT. Nothing can be said about a profile that has not

been computed so far (see Example 3 below). Notice that these are precisely the profiles

which are required for detecting the intersections at the next layer.

194 N. Gupta and S. Sen

Fig. 11. (a) The PCT. (b) Segment s is shared among the profiles πir , πis , and πi t .

EXAMPLE 3. In Figure 11 a vertex with label [16, 27] at layer l2 is visible in P16,

P20, and P24 but not in P28. For other profiles (specifically those between P24 and P28

and those before P16) we cannot say anything. Similarly, a vertex with label [26, 29]

at l3 is visible in P26 and P28 but not in P24 and P30. We cannot say anything for P25

and P29.

4.3.1.2.B. Building the data structure for intersection detection. At a fixed layer of

the PCT we do the following:

1. Construct CG on the intersections computed so far.

2. For every edge d1d2 of CG compute

(a) PBT(d1, d2), and

(b) the convex chains.

3. Compute the intersections for the next layer and label them. Also, update the labels

of the old vertices.

Notice that although computing the intersections should be the first step at any layer it

can also be thought of as the last step at the previous layer. We are doing so just for ease

of presentation. In this section we mainly discuss step 2. The details follow.

1. Constructing the CG. For m vertices, we can construct the CG data structure in

O(max{log m, tp,m + m log m/p}) time using p processors on a CREW PRAM by

the method of Lemma 4.3.

An Efficient Output-Size Sensitive Parallel Algorithm 195

2. (a) For an edge d1d2 of CG compute PBT(d1, d2). We compute BT(Pi) for all the

profiles Pi computed so far, i.e., PBT(d1, d2) using divide-and-conquer on the set

V (d1, d2) of all the vertices between d1 and d2. Let the diagonal d divide V (d1, d2) in

halves, compute PBT(d1, d) and PBT(d, d2) recursively and merge them as explained

below. Thus PBT(d1, d2) can be computed in O(log k ′) stages where k ′ is the number

of vertices between d1 and d2. Invariant: The root nodes of PBT(a, b) are labelled

with disjoint and consecutive intervals of the form [i1, i2], [i2+1, i3], . . . , [ir−1+1, ir]

for all pairs of diagonals a, b at all stages. These intervals correspond to the profile

stamps, i.e., an interval [a, b] correspond to all the profiles Pi , i ∈ [a, b]. This is obvi-

ously true at stage 1 where we have k ′ persistent trees, each with a single root node (and

consisting of just a singleton vertex) with an interval label. PBT(d1, d) and PBT(d, d2)

are merged as follows: Let the root nodes of PBT(d1, d) and PBT(d, d2) each be la-

belled with intervals of the form [i1, i2], [i2 +1, i3], . . . , [ir−1 +1, ir]. Let [l1, r1] and

[l2, r2] be the union of intervals labelling the roots of PBT(d1, d) and PBT(d, d2), re-

spectively. Introduce two hypothetical left endpoints r1 +1 and r2 +1 (in case r1 = r2,

only one such point is introduced) and merge the left endpoints of all the intervals

together with r1 +1 and r2 +1. Let i ′
1, i ′

2, . . . , i ′
s be the merged sequence. Create s −1

nodes v1, v2, . . . , vs−1 with labels [i ′
1, i ′

2 − 1], [i ′
2, i ′

3 − 1], . . . , [i ′
s−1, i ′

s − 1], respec-

tively. Let the left (right) child of a node vr be the root of PBT(d1, d) (PBT(d, d2))

containing the label [i ′
r , i ′

r+1 −1] of vr . However, if such a node (whose label contains

the label of vr) does not exist in PBT(d1, d) (PBT(d, d2)), then the left (right) child

of vr is nil. This can happen with the nodes in the left end or the right end of the se-

quence v1, v2, . . . , vs−1. For example, if i ′
1, i ′

2, i ′
3 are left endpoints in say PBT(d1, d),

then the nodes v1, v2 have their right children nil. The hypothetical points have been

introduced to take care of the label of the last node(s) (see Appendix B for details).

CLAIM 4.1. Let vr be a root node of P = PBT(d1, d2) with label [a, b] = [i ′
r , i ′

r+1 −
1]. Then the binary tree rooted at vr , denoted by Tvr

, represents BT (Pi) for all

i ∈ [a, b].

PROOF. We prove our claim by proving the following: Let i ∈ [a, b].

(a) A vertex (of profiles) which is stored at a leaf of Tvr
has a label that includes i

(i.e., a vertex in Tvr
is also in BT (Pi)).

(b) A vertex (of profiles) whose label includes i belongs to Tvr
, i.e., a vertex in BT (Pi)

is also in Tvr
.

Part (a) follows by induction by observing that the label of vr includes i implies that

the labels of the left and the right subtrees of vr also include i . We prove (b) by

contradiction. It is easy to see that if x j is a node created at stage j and whose label

contains i but x j does not belong to Tvr
, then there there exists a node x j+1 created

at stage j + 1 satisfying the same. Thus, if x is a vertex whose label includes i and

x does not belong to Tvr
, then by induction there exists a root node v of PBT(d1, d2)

satisfying the same. This contradicts the fact that the root nodes of PBT(d1, d2) are

labelled by disjoint intervals.

CLAIM 4.2. The number of nodes created at stage i is O(k ′).

196 N. Gupta and S. Sen

Recall that k ′ is the number of vertices between d1 and d2.

PROOF. Consider PBT(d1, d2) as a binary tree where each node u is split into at

most Nl + Nr + 1 nodes where Nl and Nr are the number of nodes the left and the

right children (respectively) of u are split into. Let this number denote the size of u.

At the leaf level or at stage 1 we have k ′ nodes, each of constant size, where k ′ is the

total number of vertices between d1 and d2. At stage i we have k ′/2i nodes, each of

size O(2i−1 − 1). Therefore total number of nodes at stage i is O(k ′).

It follows that the total size of PBT(d1, d2) is O(k ′ log k ′).

LEMMA 4.4. PBT(d1, d2) can be computed in O(max{log2 k ′, k ′ log2 k ′/p + tp,k ′

log k ′}) time with p processors on a CREW PRAM, where k ′ is the number of vertices

between d1 and d2.

PROOF. Consider PBT(d1, d2) as a binary tree as explained in the above proof. Let

Nl and Nr be the sizes of the left and the right children of the node u at stage i . Lower

limits of the intervals labelling the Nl + Nr nodes can be merged in O(log(Nl + Nr))

time using O(Nl + Nr) processors. Nl = Nr = O(2i−1 − 1) for all the k ′/2i nodes.

Thus at stage i , we have k ′/2i merging tasks, each of which performs merging in O(i)

time using O(2i) processors. Thus by Lemma 3.6 the total time of the construction

of PBT(d1, d2) is O(max{log2 k ′, k ′ log2 k ′/p + tp,k ′ log k ′}) using p processors.

(b) Computing the convex chains. Every node of PBT(d1, d2) stores a convex chain

of some vertices (that correspond to the leaves of the subtree rooted at the node) be-

tween d1 and d2. We store this chain in a binary tree and we use the terms “root

of the tree,” the “tree,” and the “convex chain” it represents interchangeably. Each

node of the tree represents a lower convex hull4 of a set of vertices in three parts:

two parts are stored in the left and the right subtrees and the third part is an edge

connecting the first two parts. We call this edge the “connector.” Each node of the

tree is labelled with [p1, p2] if it represents the part of the chain between p1 and

p2, i.e., the lower convex hull of the vertices whose y-coordinates are in the interval

[y(p1), y(p2)] and also store in it the connector pq between the convex subchains

stored in its left and right subtrees (see Figure 12). These are used for the binary

search on the convex chains. This structure is similar to the dynamic convex-hull data

structure of Overmars–Leeuwen [OL].

For a node u of PBT(d1, d2) let

• Su denote the convex chain at u, i.e., the convex chain of the vertices which are at

the leaves of the subtree rooted at u,

• lu and ru be the left and the right children of u in PBT(d1, d2),

• puqu be the common tangent between Slu
and Sru

, and

• Lu, Ru be the parts of Su to the left of pu and the right of qu , respectively. That is,

Lu, Ru are the left and the right subtrees of the root of Su .

4 A lower convex hull is the part of C extending from the point with the minimum y-coordinate to the point

with the maximum y-coordinate in counterclockwise direction.

An Efficient Output-Size Sensitive Parallel Algorithm 197

Fig. 12. Lu : part of the convex chain at u toward the left of the common tangent stored at u.

Let u be a node created at stage l of PBT(d1, d2). Recall that PBT(d1, d2) is con-

structed bottom-up, therefore stage l represents the distance from the leaves. Given Sv

for all the nodes v created at stages ≤ l compute Su as follows: If lu (or ru) is nil, then

Su is the same as Sru
(or Slu

, respectively), then stop, else we compute Su in three parts:

(a) Compute the common tangent puqu between Slu
and Sru

.

(b) Compute Lu .

(c) Compute Ru .

We store the common tangent and the pointers to Lu and Ru in Su , and a pointer to Su

in u. To save space one can store Su in u itself. However, storing it separately makes

the analysis easier. The common tangent can be computed by a binary search on Slu

and Sru
. We show how to compute Lu . Ru can be computed analogously. Initially Lu

is empty. To compute Lu , split Slu
on pu as follows: Let v = lu ,

If pv = pu

then Paste (append) Lv to Lu and stop (Paste is explained later)

else

if the common tangent at v is to the left of pu (i.e., Lu contains the common tangent

at Sv) then

• Paste Lv to Lu .

• SPLIT 1(Rv, pu).

• else SPLIT 1(Lv, pu).

198 N. Gupta and S. Sen

SPLIT 1(root,p) is a recursive procedure as given below:

SPLIT 1(root,p)

If root has label [a, p] for some a (for Ru we may be looking for a label [p, b] for

some b), then Paste root to Lu and stop, else if p ∈ right child r of the root, then

• Paste the left child l of root to Lu .

• SPLIT 1(r, p).

• else SPLIT 1(l, p).

“root” above is the root of a tree representing some convex subchain of Sv .

Notice that in the above procedure we are pasting roots of some trees (subtrees of

Sv) representing the convex subchains of Sv , to Lu . Also notice that we paste at most

one convex subchain (or subtree) from each level of Sv except possibly at the last level,

i.e., the last two subchains may come from the same level of Sv . Let T1, T2, . . . , Tm,

m = O(height of Sv), be the trees pasted to Lu in this order. Let ht (Ti) denote the

height of Ti , ∀i . Then,

ht (Ti) ≤ ht (Ti−1) − 1.

Paste Ti to Lu as follows (see Figure 12):

(a) If i ≤ m − 1, create a node ni with right child nil and left child Ti , label ni with

[pi , pu] where [pi , c] is the label of the root of Ti (for some c). n1 is the root of

the tree representing Lu .

(b) If 2 ≤ i ≤ m − 1, make ni the right child of ni−1. Let [a1, b1] and [a2, b2] be the

labels of Ti−1 and the label of ni , respectively, then store the connector b1a2 in ni−1.

(c) If i = m, make Tm (the one with label [a, pu] for some a) the right child of nm−1.

Let [a1, b1] and [a2, b2] be the label of Tm−1 and the label of Tm , respectively,

then store the connector b1a2 in nm−1.

To paste to Ru , interchange left and right in the above steps.

CLAIM 4.3. The height of the tree rooted at n1 is ht (T1) + 1.

PROOF. By induction one can show that the height of the tree rooted at ni is ht (Ti)+1.

See Appendix C for details.

Also, the height of Su is clearly O(height of Sv + 1).

Thus, Lu can be computed in O(m) = O(l) time sequentially. Recall that u is a

node of PBT(d1, d2) created at stage l. Similarly, Ru (and hence Su) can be computed

in O(l) time sequentially.

REMARK. We had observed earlier that a ray intersects a profile Pi between diago-

nals d1 and d2 if and only if it intersects the lower convex chain of the vertices of Pi

between d1 and d2. Notice that d1 and d2 were the vertices of Pi , so that the convex

chain extends from d1 to d2. However, now d1 and d2 are not necessarily the vertices

of Pi . Therefore we introduce the following points for the purpose of computing the

convex chains (see Figure 10): Let pi (qi) be the leftmost (rightmost) point of Pi

An Efficient Output-Size Sensitive Parallel Algorithm 199

between d1 and d2. Let el (er) be the left (right) edge incident on pi (qi). Find out

the intersection of el (er) with d1 (d2) and introduce these points with the same label

as that of pi (qi). This is easy to do. Follow the left (right) splines of the roots of

PBT(d1, d2) and introduce these points as the left (right) children of the last nodes.

The total number of the vertices become at most thrice. In Figure 10, x1 (respectively

x2) is an intersection of the rightmost (respectively leftmost) edge of P1 (respectively

P2) between d1 and d2 with the right diagonal d2 (respectively left diagonal d1).

Similarly, x3 and x4 are the intersections of the leftmost and the rightmost edges,

respectively, of P3 with d1 and d2, respectively. Hence we have the following lemma:

LEMMA 4.5. Let u be a node created at stage l of PBT(d1, d2), then given Slu
and Sru

,

Su can be computed in O(l) time sequentially. Also, the height of the tree representing

Su is O(l).

Since the convex chains Sv (for the nodes v created earlier) that are used for the

construction of Su are not destroyed at any step of the computation of Su , then Su can

be computed independently for all nodes u created at stage l of PBT(d1, d2) in parallel.

4.3.1.3. Putting the pieces together. Suppose we have computed all the intersections

up to layer L of the PCT—the number of intersections computed so far is O(k). Let tp,r

be the time to solve the processor allocation problem of size r with p processors. Then

the ACG at a fixed layer of the PCT is constructed as follows:

1. Compute CG: O(max{log k, tp,k+k log k/p}) time using p processors by Lemma 4.3.

For each edge d1d2 of CG:

(a) Compute PBT(d1, d2): O(max{log2 k ′, tp,k ′ log k ′ + k ′ log2 k ′/p}) time with p

processors, where k ′ is the total number of vertices between d1 and d2 (Lemma 4.4).

(b) Compute the convex chains: consider stage i of PBT(d1, d2). Let ni be the total

number of nodes created at stage i of PBT(d1, d2). Then for each u created at

stage i , Su can be computed in O(i) = O(log k ′) time sequentially (Lemma 4.5).

Since the size of PBT(d1, d2) is O(k ′ log k ′), by Lemma 3.5 the convex chains

at all the nodes of PBT(d1, d2) can be computed in O(max{log2 k ′, tp,k ′ log k ′ +
k ′ log2 k ′/p}) time using p processors in a CREW PRAM. The term tp,k ′ follows

from the term tp,Ni
for phase i in the proof of Lemma 3.5. Also, the maximum

height of any of the trees representing these convex chains is O(log k ′) from

Lemma 4.5.

2. Compute the convex chains for all the edges of CG by proceeding level by level

from the leaf up to the root using the following observation:

Let a, b, c be the nodes of CG as shown in Figure 13.

PBT(a, b) = Merge(PBT(b, c), PBT(a, c)),

where Merge(PBT(b, c), PBT(a, c)) is:

Split the intervals labelling the roots of PBT(b, c) and PBT(a, c) and create new

nodes for PBT(a, b) with the newly created intervals as their labels (as explained

earlier in the beginning of Section 4.3.1.2.B). Suppose we have computed PBT(d1, d2)

(together with the convex chains) for all nodes d2 at levels ≥ j (levels closer to leaves)

200 N. Gupta and S. Sen

Fig. 13

of CG. Let c be a node at level j of ACG and let a, b, c be as shown in Figure 13.

Then, by inductive hypothesis, we have PBT(b, c) and PBT(a, c). We denote them

by P1 and P2 and the convex chain by Su for all the nodes u belonging to P1 or

P2. We denote PBT(a, b) by P . We merge P1 and P2 and compute the new convex

chains as follows:

(a) Split-up the intervals labelling the roots of P1 and P2 and create new nodes for

P with the newly created intervals as their labels (as explained earlier).

(b) For each newly created node u above, compute the common tangent between Slu

and Sru
(lu ∈ P1, ru ∈ P2).

(c) For each newly created node u, compute the convex chain Su from Slu
and Sru

(as

explained earlier).

Time to merge P
1 and P

2

Let sl , sr , s be the sizes of the left and right subtrees of c and the tree rooted at c,

respectively. Then sl = sr = O(k/2 j) and s = O(k/2 j−1).

(a) P1 and P2 each have O(k/2 j) roots. Recall that the total number of nodes created

at any stage of PBT(d1, d2) is O(k ′) where k ′ is the number of vertices between

d1 and d2. Hence step (a) above can be done in O(log k) time using k/2 j−1

processors.

(b) The number of roots of P is O(k/2 j−1). The common tangents can therefore be

computed with k/2 j processors in O(log k) time by a binary search on the convex

chains associated with P1 and P2.

(c) Computing the convex chains also takes O(j) = O(log k) time with k/2 j−1

processors by Lemma 4.5.

Therefore P along with the convex chains can be computed in O(log k) time with

k/2 j−1 processors. The total number of nodes at level j of CG is 2 j and the number of

edges incident on each node is two (one tree edge and one superpointer). Therefore

by Lemma 3.6, we can compute ACG, i.e., PBT(d1, d2) together with the convex

chains for all edges d1d2 of CG, in O(max{log2 k, tp,k log k +k log2 k/p}) time using

p processors. Hence we have the following lemma:

LEMMA 4.6. At a fixed layer of the PCT, the ACG structure can be constructed in

O(max{log2 k, tp,k log k + k log2 k/p}) time using p processors on a CREW PRAM.

An Efficient Output-Size Sensitive Parallel Algorithm 201

To search whether a ray intersects a profile and detect the first intersection in case it

does, proceed level by level of ACG starting from the root, according to the recursive

search procedure laid down earlier in Section 4.3.1. At each level, it involves searching

whether a ray intersects a convex chain between two diagonals, say d1 and d2. To search

the convex chain corresponding to a profile Pi , a binary search is done on Su where u

is the root of PBT(d1, d2) labelled with an interval containing i . This can be done in

O(log k) sequential time at each level of ACG, i.e., a total of O(log2 k) sequential time.

Thus, detecting whether a segment intersects a profile and computing its first intersection

if it does, takes O(log2 k) sequential time. From Lemma 4.2, all ks intersections of a

segment s with a profile can be detected in O(max{log2 k + tp,ks
) log k, ks log2 k/p})

time with p processors.

4.3.2. Detecting intersections at the next layer of the PCT. At the next layer of the

PCT several (actual) profiles are being computed in parallel. Suppose at a node u of

the PCT, we compute Pj by merging Pi (i < j , Pi inherited from the parent of u)

with an intermediate profile πi j precomputed (by the left child of u) in phase 1. For

each segment s of πi j we compute the intersection of s with Pi . Some of the vertices

of Pi may be deleted as they lie below s and hence do not contribute to Pj . Some new

intersections may also be detected. Suppose we have sufficient processors initially to

assign two processors to each segment of all the intermediate profiles. More processors

are allocated to segments as more intersections are detected as explained in Lemma 4.2.

However, now we divide a segment into two subsegments by taking the middle diagonal

of the entire set of diagonals (intersections computed so far) spanned by s rather than

taking the middle diagonal of the set of vertices of just one profile Pi with which its

intersection is to be computed. So the total number of stages is log k. The total number

of segments (whose intersections are required to be computed) is O(nα(n)) and the

total number of intersections is O(k). All the intersections of all the segments can be

computed in O(log k) stages. As in the proof of Lemma 4.2, at each phase we have

a number of subsegments—some alive and some dead. Dead subsegments are deleted

by an application of compaction. The first intersections can be computed in O(log2 k)

sequential time and the total number of alive subsegments over all the O(log k) stages

is O(k + nα(n)). Thus by Lemma 3.5 (or as done in the proof of Lemma 4.2) all the

intersections of all the segments can be computed in O(max{log3 k, tp,k+nα(n) log k+(k+
nα(n)) log2 k/p}) time. Finally the processor allocation problem of size r can be done

in O(r log r/p) time using p processors on a CREW PRAM. The term tp,k+nα(n) log k

is thus subsumed in (k + nα(n)) log2 k/p. Hence all the intersections at the next layer

of the PCT can be computed in O(max{log3 n, (k + nα(n)) log2 n/p}) time using p

processors, or all intersections can be detected in O(max{log4 n, (k +nα(n)) log3 n/p})
time over all layers of the PCT using p processors. The new intersections computed at

a fixed layer of the PCT can be sorted and merged with the already existing vertices in

the required bounds. Update the labels of the repeated vertices and discard the ones with

the old labels using compaction.

Detecting the deleted vertices and updating their labels: Observe that at a fixed

layer of the PCT a vertex is deleted (and also detected) at most at one node of the PCT,

i.e., no two processors attempt to update the label of a vertex at the same time. Label

each new intersection point with its segment and the profile. Sort these points on y-

202 N. Gupta and S. Sen

Fig. 14

coordinates and then use a stable sorting algorithm to sort them by their segments. To

each consecutive pair of points I1, I2 (I1 to the left of I2) belonging to the same segment

assign one processor. Let d1, d2, . . . , dr be the diagonals between I1 and I2. Let d be the

least common ancestor of d1 and dr in CG. Then there exists a path from d to d1 and a

path from d to dr in CG of length O(log k) consisting only of these diagonals (possibly

including shooting pointers)—see Figure 14. Let I1 lie between the diagonals v4 and v7

and let I2 lie between v8 and v6. Then d1 = v7 , dr = v8, and d = v1 and the required

paths are v1, v7 and v1, v3, v8). The vertices of Pi lying between I1 and I2 are the union

of the vertices of Pi lying between these diagonals. The vertices of Pi lying between

d ′
j and d ′

j+1 are obtained by following the tree rooted at a root node of PBT(d ′
j , d ′

j+1)

labelled with an interval containing i . Hence the label of a deleted vertex can be updated

in O(log2 k) time. See Appendix D for details. This completes our description of all the

algorithmic steps and we summarize Algorithm Parhidsurf below.

Algorithm Parhidsurf

1. Given a two-dimensional surface as a straight line graph in three dimen-

sions, project the line segments on the x–y plane and triangulate the

graph.

Time = O(log n), processors = O(n) using any efficient algorithm like

that in [ACG].

2. Order the edges of the (planar) triangulated graph in the increasing dis-

tance from the viewer using the method of [TV]. The ordered set of edges

is stored in a separator tree.

Time = (log n), processors = O(n).

3. For all the nodes of the separator tree do in parallel

Compute the upper profile of the edges in the leaves of the subtree rooted

at the node (the edges in the leaves of the separator tree are sorted in the

increasing distance from the viewer).

Time = O(log2 n), processors = O(nα(n)) using Lemma 4.1.

An Efficient Output-Size Sensitive Parallel Algorithm 203

4. For each layer L of the PCT do

(a) Compute the CG structure on all the k intersections computed so far.

Time = O(max{log k, tp,k + k log k/p}) using p processors by

Lemma 4.3.

(b) For each level l of CG build a shared data structure ACG for detecting

intersections of a line segment with a monotone polygon:

(i) For all edges d1d2 of CG with d2 at level l (for all profiles com-

puted so far represented by a common shared data structure) do

in parallel

• Compute PBT(d1, d2) (Section 4.3.1.2.B, step 2(a)).

• Compute all the convex chains (Section 4.3.1.2.B, step 2(b)).

(ii) Decrement l.

Time = O(max{log2 k, tp,k log k +k log2 k/p}) time using p proces-

sors by Lemma 4.6.

(c) Detect the intersections for the next layer, i.e., L + 1 of the PCT as

follows:

For all the nodes u at layer L + 1 of the PCT do in parallel

Suppose at node u the profile Pj is computed by merging the

intermediate profile πi j with Pi . For all the segments s of πi j do

in parallel

Compute all the intersections of s with Pi as explained in

Section 4.3.2 or in the proof of Lemma 4.2. To search the

convex chain corresponding to a profile Pi , a binary search

is done on the labels of the roots of the PCT corresponding

to the interval containing i . The binary tree rooted at that

node gives us the corresponding convex chain.

Time = O(max{log3 n, (k + nα(n)) log2 n/p}) using p processors.

(d) Increment L .

All the intersections can be detected in O(max{log4 n, (k +
nα(n)) log3 n/p}) time over all layers of the PCT using p processors.

Therefore we arrive at the main result of this paper.

THEOREM 4.1. The hidden-line elimination problem for terrains can be solved in

O(max{log4 n, (k + nα(n)) log3 n/p}) time using p CREW processors where n and

k are the input and the output sizes, respectively.

REMARK. For p = nα(n)/log n, the work bound is O((k + nα(n)) log3 n) which is

within an O(log n) factor of the sequential bound of Reif and Sen [RS2].

5. Concluding Remarks and Open Problems. We presented an output-size sensitive

parallel algorithm for hidden-line elimination for terrain maps. The algorithm provides

a solution in a device-independent manner. Our algorithm achieves a work bound of

O((k + nα(n)) log3 n which is only about an O(log n) factor away from the sequential

running time of Reif and Sen [RS2] and an O(log2 n) factor away from that of Overmars

204 N. Gupta and S. Sen

et al. Our algorithm runs in O(max{log4 n, k log3 n/p}) time for k > nα(n) using

p = nα(n)/ log n processors in a CREW PRAM.

Our algorithm can be simplified by using an idea of Overmars et al. [OKS]. By

“clipping” the intermediate profiles with respect to the actual profiles in the downward

phase of our computation, we can avoid the sharing of data structures. This can lead to an

improvement in the running time by a logarithmic factor since we may be able to modify

the basic algorithm in a way that eliminates the ray-shooting data structure. However,

we feel that our approach of using a persistence data structure in a parallel setting is of

independent interest and has potential applications to more general scenes.

A natural direction for further work is to generalize the algorithm for any arbitrary

three-dimensional scene. However, we will need efficient algorithms for partitioning the

scene into disjoint parts such that an ordering of edges is feasible. Moreover, such a

partitioning scheme will also have to output-size sensitive.

Appendix A. Compute the Intersections of Profiles. Let x1, x2, . . . , xr and y1, y2,

. . ., ys be the vertices of profiles p1 and p2, respectively. Let z1, z2, . . . , zm(m = r + s)

be the merged sequence. If for some i, zi and zi+1 are vertices of the same profile, say

p2, and their visibilities are same, then the segment zi zi+1 does not intersect the other

profile. If their visibilities are different, then let xr be the predecessor of both zi and zi+1

in p1, then the segment zi zi+1 intersects the segment xr xr+1 of p1.

Next, consider the subsequence xi , yj , xi+1, yj+1, xi+2 of z1, z2, . . . , zm for some i

and j (see Figure 15). Let V is(zi) denote the visibility of zi .

Case 1. If Vis(yj) = Vis(yj+1) = visible, then yj yj+1 does not intersect p1.

Case 2. If Vis(yj) = Vis(yj+1) = invisible, then

(a) if Vis(xi+1) = invisible, then yj yj+1 intersects both xi xi+1 and xi+1xi+2,

(b) if Vis(xi+1) = visible, then yj yj+1 does not intersect p1.

Case 3. If Vis(yj) �= Vis(yj+1), then

(a) if Vis(xi+1) = invisible, then yj yj+1 intersects xi+1xi+2,

(b) if Vis(xi+1) = visible, then yj yj+1 intersects xi xi+1.

Appendix B. Merge PBT(d1, d) and PBT(d1, d2): Introducing Hypothetical Points

r1 + 1 and r2 + 1. Let rmin = min{r1, r2} and rmax = max{r1, r2}. Let i ′′
1 , i ′′

2 , . . . , i ′′
t be

the merged sequence of left endpoints not including r1 + 1 and r2 + 1.

Case 1: i ′′
j ≤ rmin < i ′′

j+1 for some j < t . Then create nodes with the following

labels: [i ′′
1 , i ′′

2 − 1], [i ′′
2 , i ′′

3 − 1], . . . , [i ′′
j , rmin], [rmin + 1, i ′′

j+1 − 1], [i ′′
j+1, i ′′

j+2 −
1], . . . , [i ′′

t−1, i ′′
t − 1], [i ′′

t , rmax].

Case 2: rmin ≥ i ′′
t . Then create nodes with the following labels: [i ′′

1 , i ′′
2 − 1], [i ′′

2 , i ′′
3 −

1], . . . , [i ′′
t−1, i ′′

t − 1], [i ′′
t , rmin] and one more node with label [rmin + 1, rmax] if

rmin �= rmax.

It is easy to see from above that the introduction of hypothetical points r1 + 1 and r2 + 1

takes care of both the conditions above.

An Efficient Output-Size Sensitive Parallel Algorithm 205

Fig. 15. Let yj yj+1 be one of the segments of profile p2. Case 1: both yj and yj+1 are visible and the segment

yj yj+1 does not intersect the profile p1. Case 2: both yj and yj+1 are invisible. (a) xi+1 is invisible and the

segment yj yj+1 intersects both the segments xi xi+1 and xi+1xi+2 of the profile p1. (b) xi+1 is visible and the

segment yj yj+1 does not intersect the profile p1. Case 3: yj is visible and yj+1 is invisible. (a) xi+1 is invisible

and the segment yj yj+1 intersects the segment xi+1xi+2 of the profile p1. (b) xi+1 is visible and the segment

yj yj+1 intersects the segment xi xi+1 of the profile p1.

Appendix C

CLAIM. The height of the tree rooted at ni = ht (Ti) + 1.

PROOF. Let ht (ni) denote the height of the tree rooted at ni . Since ht (Tm) ≤ ht (Tm−1)−
1, max{ht (Tm), ht (Tm−1)} = ht (Tm−1). Thus ht (nn−1) = ht (Tm−1) + 1. The claim is

thus true for i = m − 1. Suppose it is true for all i > j , then

ht (n j) = max{ht (Tj), ht (n j+1)} + 1 = max{ht (Tj), ht (Tj+1) + 1} + 1 = ht (Tj) + 1.

Hence proved.

Appendix D. Computing the Vertices of a Profile Lying Below a Subsegment. To

each consecutive pair of points belonging to the same segment, assign one processor. For

the pair I1, I2, each labeled with (s, Pi), where I1 is to the left of I2, do a binary search

on the tree edges of CG. Let d1 be the leftmost diagonal to the right of I1 and let d2 be the

rightmost diagonal to the left of I2. Let d be the least common ancestor of d1 and d2. Let

d = v1, v2, . . . , vj = d1 be a path of tree edges in CG from d to d1. Let v′
1, v

′
2, . . . , v

′
r

206 N. Gupta and S. Sen

be the nodes in order on this path to the right of I1. These are the diagonals between

d1 and d . Then there exists a path d = v′
1, v

′
2, . . . , v

′
r = d1 in CG (possibly including

superpointers). Similarly, there exists a path d = w′
1, w

′
2, . . . , w

′
s = d2 in CG of the

diagonals between d and d2. For all v′
l and for all w′

m, PT (v′
l , v

′
l+1) and PT (w′

m, w′
m+1)

contain all the vertices of Pi between v′
l , v

′
l+1 and between w′

m, w′
m+1, respectively. Let

PT (d ′
1, d ′

2) be under consideration. Let v be the root of PT (d ′
1, d ′

2) with label [a, b]

containing i . By following a path from v down to a leaf one gets to a vertex of Pi

between I1 and I2. If it lies above s, then no point of Pi is deleted by the subsegment I1 I2

of s, hence stop, else continue as follows. Let n[a,b] be the number of vertices between d ′
1

and d ′
2 whose labels contain [a, b]. This is precisely the number of vertices of Pi between

d ′
1 and d ′

2. This number can be computed while building PT (d ′
1, d ′

2) and stored at the

root v. Thus with n[a,b] processors (or one processor for each deleted vertex), labels of

all the deleted vertices between d ′
1 and d ′

2 can be updated in O(log k) time. Notice that a

vertex may be counted more than once. However, since a vertex is deleted at most at one

node of the PCT at a fixed layer, the total processor requirement is O(k). Thus all the

vertices of the profile Pi lying below the subsegment I1 I2 of s are deleted in O(log2 k)

time (O(log k) time for each pair v′
lv

′
l+1 and w′

mw′
m+1 which are O(log k) in number)

with one processor for each deleted vertex.

References

[ACG] M. J. Attalah, R. Cole, and M. T. Goodrich. Cascading divide-and-conquer: a technique for design-

ing parallel algorithms. Proceedings of the 28th IEEE Symposium on Foundations of Computer

Science, pages 151–160, 1987.

[AGO] M. Attalah, M. Goodrich, and M. Overmaars. An input-size/output-size trade-off in the time-

complexity of rectilinear hidden-surface removal. Proceedings of ICALP, 1990.

[AM] P. K. Agarwal and J. Matousěk. Ray shooting and parametric search. SIAM Journal on Computing,

22(4):794–806, 1993.

[Be] M. Bern. Hidden surface removal for rectangles. Proceedings of the 4th ACM Symposium on

Computational Geometry, pages 183–192, 1988.

[Br] R. P. Brent. The parallel evaluation of general arithmetic expressions. Journal of the ACM, 201–

208, 1974.

[CG] B. Chazelle and L. Guibas. Visibility and intersection problems in plane geometry. Proceedings

of the ACM Symposium on Computational Geometry, pages 135–146, 1985.

[CS] R. Cole and M. Sharir. Visibility problems for polyhedral terrains. Tech. Report No. 92, Courant

Institute of Mathematical Sciences, 1986.

[D] F. Devai. Quadratic bounds for hidden-line elimination. Proceedings of the 2nd Annual Symposium

on Computational Geometry, pages 269–275, 1986.

[dBHO+] M. de Berg, D. Halperin, M. Overmars, J. Snoeyink, and M. van Kreveld. Efficient ray shooting

and hidden surface removal. Algorithmica, 12:30–53, 1994.

[DSST] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarzan. Make the data-structures persistent.

Journal of Computer and System Sciences, 38:86–124, 1989.

[G] M. T. Goodrich. A polygonal approach to hidden-line elimination. GVGIP: Graphical Models and

Image Processing, 54(1):1–12, 1992.

[GGB] M. Ghouse, M. Goodrich, and J. Bright. Generalized sweep methods for parallel computational

geometry. Proceedings of the 2nd ACM Symposium on Parallel Algorithms and Architectures,

pages 280–289, 1990.

[GO] R. Guting and T. Ottmann. New algorithms for special cases of the hidden-line elimination problem.

Proceedings of STACS, pages 161–171, 1985.

An Efficient Output-Size Sensitive Parallel Algorithm 207

[KAG] R. Kosaraju, M. Attalah, and M. Goodrich. Parallel algorithms for evaluating sequences of set-

manipulation operations. Proceedings of the Aegean Workshop on Computing, pages 1–10. LNCS

319. Springer-Verlag, Berlin, 1988.

[LF] R. Ladner and M. Fischer. Parallel prefix computation. Journal of the ACM, 27(4):831–838, 1980.

[M] M. McKenna. Worst-case optimal hidden-surface removal. ACM Transactions on Graphics, 19–

28, 1987.

[N] O. Nurmi. A fast line-sweep algorithm for hidden-line elimination. BIT, 25:466–472, 1985.

[OKS] M. Overmars, M. Kartz, and M. Sharir. Efficient hidden surface removal for objects with small

union size. Computational Geometry: Theory and Application, 2:223–234, 1992.

[OL] M. H. Overmars and J. van Leeuwen. Maintenance of configuration in the plane. Journal of

Computer and System Sciences, 23:166–204, 1981.

[OS] M. Overmars and M. Sharir. Output-sensitive hidden-surface removal. Proceedings of the 30th

IEEE Symposium on Foundations of Computer Science, pages 598–603, 1989.

[PV] F. Preparata and J. Vitter. A simplified technique for hidden-line elimination in terrains. Proceed-

ings of STACS, 1992.

[R] J. H. Reif. Synthesis of Parallel Algorithms. Morgan Kaufmann, San Mateo, California, 1993.

[RS1] J. H. Reif and S. Sen. An efficient output-sensitive hidden-surface removal algorithm and its paral-

lelization. Proceedings of the 4th Annual Symposium on Computational Geometry, pages 193–200,

1988.

[RS2] J. H. Reif and S. Sen. An efficient output-sensitive hidden-surface removal algorithm for polyhedral

terrains. Mathematical Computing Modelling, 21(5):89–104.

[S] A. Schmitt. Time and space bounds for hidden-line and hidden-surface elimination algorithms.

Proceedings of EUROGRAPHICS, pages 43–56, 1981.

[SSS] R. F. Sproull, I. E. Sutherland, and R. A. Schumacker. A characterization of ten hidden-surface

algorithms. Computing Surveys, 6(1):1–25, 1974.

[SV] Y. Shiloach and U. Vishkin. Finding the maximum, merging and sorting in a parallel computation

model. Journal of Algorithms, 2(1):88–102, 1981.

[TV] R. Tamassia and J. S. Vitter. Optimal parallel algorithms for transitive closure and point location

in planar structures. Proceedings of the ACM Symposium on Parallel Algorithm and Architectures,

pages 399–408, 1989.

