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Abstract

By exploiting the hidden algebraic structure of the Schrödinger Hamiltonian, namely
the sl(2), we propose a unified approach of generating both exactly solvable and quasi-
exactly solvable potentials. We obtain, in this way, two new classes of quasi-exactly
solvable systems one of which is of periodic type while the other hyperbolic.

PACS number(s): 03.65

Tracking down solvable quantum potentials has always aroused interest. Apart from
being useful in the understanding of many physical phenomena, the importance of searching
for them also stems from the fact that they very often provide a good starting point for
undertaking perturbative calculations of more complex systems.

Solvable potentials can be broadly classified into two categories : the ones which
are exactly solvable[1, 2, 3, 4](including the conditional ones[5, 6]) and others which are
quasi-exactly solvable[7, 8, 9, 10]. A spectral problem is said to be exactly solvable(ES) if
one can determine the whole spectrum analytically by a finite number of algebraic steps.
Factorization hypothesis[11, 12], group-theoretical techniques with a spectrum-generating
algebra[13, 14, 15] and use of integral transformations[16, 17] are some of the time-honoured
procedures of constructing ES potentials[18]. On the other hand, there exist an infinite
number of normal spectral problems which are not amenable to an exact treatment. These are
the non-solvable (NS) ones. The quasi-exactly solvable(QES) class is the missing link[19, 20]
between the ES and the NS potentials. Actually for a QES system we can only determine a
part of the whole spectrum : this essentially means that in an infinite-dimensional space of
states there exists a finite-dimensional subspace for which the Schrödinger equation admits
partial algebraization.

However, in the literature, a common framework that brings together the ES and QES
class is still lacking. The purpose of this letter is to fill this gap by exploiting the hidden
dynamical symmetry of the Schrödinger equation. We show, in a straightforward way, that
by subjecting the Schrödinger equation to some coordinate transformation and adopting for
the underlying symmetry group the simplest choice namely the sl(2), it is possible to set up
a master equation from which the ES and QES potentials readily follow. Following this line,
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we construct not only some of the well-known ES potentials which are with us for a long time
but also uncover new families of QES potentials which hitherto have remained unnoticed.

Let us start with the following differential realization of the sl(2) generators T±, T 0

given by

T+ = ξ2
d

dξ
− nξ , T− =

d

dξ
, T 0 = ξ

d

dξ
− 1

2
n , (1)

where ξ ∈ R and n is some non-negative integer. These generators act on the represention
space Pn of polynomials in ξ of degree not exceeding n and obey the commutation relations

[T+, T−] = −2T 0 , [T 0, T±] = ±T± . (2)

Let us assume that the quantum Hamiltonian is expressible as a quadratic combina-
tions of the generators T a with constant coefficients, that is

H = −
∑

a,b=0,±

CabT
aT b −

∑

a=0,±

CaT
a − d(n) , (3)

where Cab, Ca are numerical parameters of which Cab is symmetric and d is a suitably chosen
constant that depends on n. Note that this functional dependence is single-valued for ES mod-
els, while it is multivalued for QES. In the latter case the range is {d0(n), d1(n), . . . dn(n)}.

Now from (1) it is easy to see that H has the representation

H(ξ) = −
4

∑

j=2

Bj(ξ)
dj−2

dξj−2
. (4)

The coefficients Bj ’s in (4) are the j-th degree polynomial in ξ :

B4(ξ) = C++ξ
4 + 2C+0ξ

3 + C00ξ
2 + 2C0−ξ + C−− , (5)

B3(ξ) =
1− n

2

dB4

dξ
+A2(ξ) ,

B2(ξ) =
n(n− 1)

12

d2B4

dξ2
− n

2

dA2

dξ
+
n(n+ 2)

12
C00 + d(n) ,

where C+− = C−+ = 0 because of the constancy of the Casimir operator and A2(ξ) =
C+ξ

2 + C0ξ + C− .

However the coeffecient of d2/dξ2 in (4) is not unity. To achieve this we introduce

the mapping u(ξ) =
∫ ξ

[B4(τ)]
−1/2dτ thereby obtaining

H(u) = − d2

du2
+

1

2
√
B4

(

dB4

dξ
− 2B3

)
∣

∣

∣

∣

ξ=ξ(u)

d

du
−B2

∣

∣

∣

∣

∣

ξ=ξ(u)

. (6)

To proceed further, we may look uponH(u) as a ‘coordinate-transformed’ Schrödinger
Hamiltonian. Indeed let us consider a change of variable x → x(u) that transforms the
Schrödinger wave function according to

ψ(x) → g(x)χ(u(x)) . (7)
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The standard Schrödinger equation (with ~ = 2m = 1) with the potential V (x)

[

− d2

dx2
+ V (x)

]

ψ(x) = Eψ(x) (8)

is then recast to the form

− d2χ

du2
−
[

u′′

u′2
+

2g′

u′g

]

dχ

du
−
[

g′′

gu′2
+
E − V (x)

u′2

]

χ(u) = 0 , (9)

where the primes denote derivatives with respect to x.

The general nature of (9) enables one to touch upon those differential equations whose
solutions are well-known. In particular those which are associated with special functions can
be considered for the determination of solvable potentials. Here we take a different route
by seeking a direct correspondance of (9) with the ‘coordinate-transformed’ Schrödinger
Hamiltonian H. We thus obtain

V (x) =

[

E − u′′′

2u′
+

3

4

(

u′′

u′

)2

−u′2
{

B2 −
1

4

(

2
dB3

dξ
− d2B4

dξ2

)

− 1

16B4
(2B3 −

dB4

dξ
)(2B3 − 3

dB4

dξ
)

}

ξ=ξ(u)

]

u=u(x)

(10)

In this connection we may emphasize that whereas for ES models the energy levels form an
infinite sequence, in the QES case there can be at most (n+1) levels for each choice of n. It
is thus appropriate to label the energy levels by an index j depending on n i. e. j = j(n) that
runs with n and takes values 0, 1, . . . , n, . . .∞ for the ES models but assumes only a finite
number of values {0, 1, . . . , n} for QES.

In (10) the Bj (j = 2, 3, 4) functions of sl(2) have to be suitably adjusted against
the arbitrary function u(x) of the coordinate transformation to have an acceptable form of
the quantum potentials. For this the normalizability of the wave function is to be ensured.
Note that in arriving at the form (10) we have eliminated the function g(x). However, for a
particular choice of u(x), it can be determined from

g(x) = (u′)−1/2 exp

[

1

2

∫ u(x) {2B3 − dB4/dξ

2
√
B4

}

ξ=ξ(u)

du

]

. (11)

Knowing u(x) and g(x) the wave function can be found from (7).

Equation (10) is the central result of our paper : it opens up a new approach of
generating ES and QES potentials.

To see how our scheme works in practice, let us first address to the problem of deriving
some well-known ES potentials from (10). Without giving the details of our calculations which
are straightforword we present the results in standard forms[21] :

• Harmonic oscillator: u = x, B4 = 1, B3 = −ωξ, B2 = nω [i. e. we choose C−− =
1, d(n) = nω/2, C0 = −ω (ω > 0), C++ = C+0 = C00 = C0− = C+ = C− = 0.]

V (x) =
1

4
ω2x2, Ej = (j +

1

2
)ω ,
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ψj(x) = Nj exp(−
1

4
ωx2)Hj(

√

ω

2
x), j = 0, 1, . . . , n, . . . ,∞ ,

Nj being the normalization constant.

• Morse: u = x, B4 = α2ξ2, B3 = α(α − 2A)ξ + 2Bα, B2 = −n2α2 + 2Anα [i. e.
C00 = α2, C++ = C+0 = C0− = C−− = C+ = 0, C0 = α(nα − 2A), d(n) =
Anα− 3n2α2/4, C− = 2Bα.]

V (x) = B2 exp[−2αx]−B(2A+ α) exp[−αx], Ej = −(A− jα)2,

ψj(x) = Nj exp[(jα−A)x] exp[−B
α
e−αx]L

(2A

α
−2j)

j

(

2B

α
e−αx

)

, j = 0, 1, . . . , n, . . .∞ ,

Nj being the normalization constant.

• Pöschl-Teller: u = x, B4 = 4α2(ξ2 − 1), B3 = 4α{(A + B + 2α)ξ + B − A − α}, B2 =
α2(1− 4n2)+ 2α{2n(A−B) +A+B}+4AB [i. e. C00 = 4α2 = −C−−, C++ = C+0 =
C0− = C+ = 0, d(n) = 4AB + α2(1 + 3n)(1 − n) + 2nα(3A− B) + 2α(A + B), C− =
4α(B −A− α), C0 = 4α{A+B + α(n+ 1)}.]

V (x) = B(B − α)cosech2αx−A(A+ α)sech2αx, Ej = −(A−B − 2jα)2,

ψj(x) = Nj sinh
B/α αx cosh−A/α αxP

(B

α
−

1

2
,−A

α
−

1

2
)

j (cosh 2αx), j = 0, 1, . . . , n, . . .∞ ,

Nj being the normalization constant.

• Scarf II: u = x, B4 = α2(ξ2+1), B3 = α(2A+3α)ξ+2Bα, B2 = α(n+1){α(1−n)+2A}[i.
e. we choose C00 = C−− = α2, C0 = α2(n+2)+2Aα, C− = 2Bα, C++ = C+0 = C0− =
C+ = 0, d(n) = α2 +Aα(3n+ 2) + nα2(4− 3n)/4.]

V (x) = [B2 −A(A+ α)]sech2αx +B(2A+ α)sechαx tanhαx,

Ej = −(A− jα)2, j = 0, 1, . . . , n, . . .∞ ,

ψj(x) = Nj cosh
−A/α αx exp[−B

α
tan−1(sinhαx)]P

(−iB

α
−

A

α
−

1

2
,iB

α
−

A

α
−

1

2
)

j (i sinhαx) ,

Nj being the normalization constant.

• Coulomb: u = 2
√
x (x > 0), B4 = 4ξ, B3 = e2ξ/(n+ l + 1) + 8(l + 1), B2 = e2(n + 2l +

2)/(n+ l + 1) [i. e. C0− = 2, C0 = e2/(n + l + 1) (l ≥ 0), C− = 2(4l + n + 3), C++ =
C+0 = C00 = C−− = C+ = 0, d(n) = e2(3n+ 4l+ 4)/2(n+ l + 1).]

V (x) = −e
2

x
+
l(l+ 1)

x2
(0 < x <∞), Ej = − e4

4(j + l + 1)2
,

ψj(x) = Nj x
l+1 exp

[

− e2x

2(n+ l + 1)

]

L(2l+1)
n

(

e2x

n+ l + 1

)

, j = 0, 1, . . . , n, . . .∞ ,

Nj being the normalization constant.

Having dealt successfully with the generation of ES potentials all of which have been
well studied in the literature, let us turn to the problem of finding QES potentials from (10).
In the following we present two new families of QES potentials, one of which is periodic while
the other is hyperbolic.
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A. Periodic model

Consider the transformation u = x−a (a ∈ R) along with the representation B4 = β2(1−ξ2)
[this comes about if we set C++ = C+0 = C0− = 0, C00 = −β2 = −C−−, β 6= 0]. This
particular form for B4 immediately yields ξ = cosβu and facilitates generating a periodic
QES system. Indeed, trialing with various choices of B3 and B2 we have found that in all
four algebraizations exist each leading to a distinct QES family. Our results are

1. B3 = −αξ2 − 2β2ξ + α± β2, B2 = nαξ + n(n+2)
4 β2 + dj(n)

[ i. e. C+ = −α = ±β2 − C−, C0 = −(n+ 1)β2, α 6= 0 ]

V1(x) = − α2

8β2
cos 2β(x− a)− α(n+ 1) cosβ(x − a)− β2

4

Ej =
n(n+ 2)

4
β2 − α2

8β2
∓ α

2
+ dj(n), j = 0, 1, . . . , n ,

ψj(x) = sin

{

(δk+)
π

2
+ β

x− a

2

}

exp[− α

β2
sin2(β

x− a

2
)]

n
∑

r=0

b
(r)
j cosr β(x − a), (k = +,−).

2. B3 = αξ2 − 2β2ξ − α± β2, B2 = −nαξ + n(n+2)
4 β2 + dj(n)

[ i. e. C+ = α = ±β2 − C−, C0 = −(n+ 1)β2, α 6= 0 ]

V2(x) = − α2

8β2
cos 2β(x− a) + α(n+ 1) cosβ(x − a)− β2

4

Ej =
n(n+ 2)

4
β2 − α2

8β2
± α

2
+ dj(n), j = 0, 1, . . . , n ,

ψj(x) = sin

{

(δk+)
π

2
+ β

x− a

2

}

exp[
α

β2
sin2(β

x− a

2
)]

n
∑

r=0

b
(r)
j cosr β(x− a), (k = +,−)

3. B3 = ±αξ2 − 3β2ξ ∓ α, B2 = n(n+4)
4 β2 + dj(n)∓ nαξ

[ i. e. C+ = ±α = −C−, C0 = −(n+ 2)β2, α 6= 0 ]

V3(x) = − α2

8β2
cos 2β(x− a)± α(n+

3

2
) cosβ(x − a)− β2

4

Ej =
n(n+ 4) + 3

4
β2 − α2

8β2
+ dj(n), j = 0, 1, . . . , n ,

ψj(x) = sinβ(x− a) exp[± α

β2
sin2 β

x− a

2
)]

n
∑

r=0

b
(r)
j cosr β(x − a).
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4. B3 = ±αξ2 − β2ξ ∓ α, B2 = ∓nαξ + n2

4 β
2 + dj(n)

[ i. e. C+ = ±α = −C−, C0 = −nβ2, α 6= 0 ]

V4(x) = − α2

8β2
cos 2β(x− a)± α(n+

1

2
) cosβ(x − a)− β2

4

Ej =
n2 − 1

4
β2 − α2

8β2
+ dj(n), j = 0, 1, . . . , n ,

ψj(x) = exp[± α

β2
sin2 β

x− a

2
]

n
∑

r=0

b
(r)
j cosr β(x− a).

The above potentials are new and appear in the true spirit of QES. It should be noted
that the particular class corresponding to n = 0 for V1(x) has been studied for understanding

nonaveraged properties of disordered systems[22]. The coefficients b
(r)
j , r = 1, 2, . . . n and

dj(n) appearing in the Bloch wave functions ψj(x) and band-edge energies are to be calculated
from (9) for a given n. It is found that number of levels in the algebraic sector is 2|m|, where
m is the coefficient of α cosβ(x − a) in the potentials.

B. Generalized double-well potential

With u = x − a(a ∈ R), we next adopt for B4 the choice B4 = 4γ2(ξ2 − 1)[i. e. if we set
C++ = C+0 = C0− = 0, C00 = 4γ2 = −C−−, γ 6= 0]. ξ turns out to be in the hyperbolic
form ξ = cosh 2γu. As before we carry out trials with B3 and B2 to arrive at the following
four types of algebraizations:

1. B3 = 2γ2ηξ2 + 8γ2ξ + 2γ2(±2− η), B2 = −nγ2(2ηξ + n+ 2) + dj(n)

[ i. e. C+ = 2γ2η = ±4γ2 − C−, C0 = 4γ2(n+ 1), η 6= 0 ]

V1(x) =
γ2η2

8
cosh 4γ(x− a) + 2ηγ2(n+ 1) cosh 2γ(x− a)− γ2η2

8

Ej = −[(n+ 1)2 ± η]γ2 + dj(n), j = 0, 1, . . . , n ,

ψj(x) = [(δk+) sinh γ(x− a) + (δk−) cosh γ(x− a)] exp [
η

4
cosh 2γ(x− a)]

×
n
∑

r=0

b
(r)
j coshr 2γ(x− a), (k = +,−).

2. B3 = 2γ2(−ηξ2 + 4ξ + η ± 2), B2 = nγ2(2ηξ − n− 2) + dj(n)

[ i. e. C+ = −2γ2η = ±4γ2 − C−, C0 = 4γ2(n+ 1), η 6= 0 ]
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V2(x) =
γ2η2

8
cosh 4γ(x− a)− 2ηγ2(n+ 1) cosh 2γ(x− a)− γ2η2

8

Ej = −[(n+ 1)2 ∓ η]γ2 + dj(n), j = 0, 1, . . . , n ,

ψj(x) = [(δk+) sinh γ(x− a) + (δk−) cosh γ(x− a)] exp[−η
4
cosh 2γ(x− a)]

×
n
∑

r=0

b
(r)
j coshr 2γ(x− a), (k = +,−) .

3. B3 = 2γ2(∓ηξ2 + 2ξ ± η], , B2 = nγ2(±2ηξ − n) + dj(n)

[ i. e. C+ = ∓2γ2η = −C−, C0 = 4nγ2, η 6= 0 ]

V3(x) =
γ2η2

8
cosh 4γ(x− a)∓ 2ηγ2(n+

1

2
) cosh 2γ(x− a)− γ2η2

8

Ej = −n2γ2 + dj(n), j = 0, 1, . . . , n ,

ψj(x) = exp[∓η
4
cosh 2γ(x− a)]

n
∑

r=0

b
(r)
j coshr 2γ(x− a).

4. B3 = 2γ2(∓ηξ2 + 6ξ ± η), B2 = nγ2(±2ηξ − n− 4) + dj(n)

[ i. e. C+ = ∓2γ2η = −C−, C0 = 4γ2(n+ 2), η 6= 0 ]

V4(x) =
γ2η2

8
cosh 4γ(x− a)∓ 2ηγ2(n+

3

2
) cosh 2γ(x− a)− γ2η2

8

Ej = −(n+ 2)2γ2 + dj(n), j = 0, 1, . . . , n ,

ψj(x) = sinh 2γ(x− a) exp[∓η
4
cosh 2γ(x− a)]

n
∑

r=0

b
(r)
j coshr 2γ(x− a).

The potentials V1, V2, V3, V4 may be looked upon as hyperbolic counterparts to those
of the periodic model. These generalize the bistable potential studied in the context of
homonuclear diatomic molecule[23]. Our potentials are also of interest in spin-boson and
spin-spin interacting models where similar hyperbolic forms are known to exist[24]. As before

the coefficients b
(r)
j in the wave functions and dj(n) in the energies are determined for a

given n from (9). The number of analytically known levels is 2|t|, t being the coefficient of
2ηγ2 cosh 2γ(x− a).

To summarize, we have presented a unified approach of generating ES and QES
potentials by exploiting the hidden sl(2) symmetry of the Schrödinger equation and setting
up a master equation. Our scheme is especially suitable for generating new types of solvable
potentials as we have demonstrated for the QES cases.
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