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ABSTRACT

Motivation: Inclusion body formation has been a major deterrent for

overexpression studies since a large number of proteins form insoluble

inclusionbodieswhenoverexpressed inEscherichia coli. The formation

of inclusion bodies is known to be an outcome of improper protein

folding; thus the composition and arrangement of amino acids in the

proteins would be a major influencing factor in deciding its aggregation

propensity. There is a significant need for a prediction algorithm that

would enable the rational identification of both mutants and also the

ideal protein candidates for mutations that would confer higher

solubility-on-overexpression instead of the presently used trial-and-

error procedures.

Results: Six physicochemical properties together with residue and

dipeptide-compositions have been used to develop a support vector

machine-based classifier to predict the overexpression status in

E.coli. The prediction accuracy is ~72% suggesting that it performs

reasonably well in predicting the propensity of a protein to be soluble

or to form inclusion bodies. The algorithm could also correctly predict

the change in solubility for most of the point mutations reported in lit-

erature. This algorithm can be a useful tool in screening protein libraries

to identify soluble variants of proteins.

Avalibility: Software is available on request from the authors.

Contact: balaji@iitcb.ac.in; vk.jayaraman@ncl.res.in

Supplementary information: Supplementary data are available

at Bioinformatics Online web site.

INTRODUCTION

Only some proteins are soluble upon overexpression in Escherichia

coli; most of the proteins form inclusion bodies on overexpression.

Several strategies have been reported to sidestep the problem asso-

ciated with the solubilization and refolding of the overexpressed

proteins from inclusion bodies (Hammarstrom et al., 2002;

Tresaugues et al., 2004; Yang et al., 2003). These include

(1) using a different host or strain of E.coli, (2) reducing the level

of expression either by decreasing the induction temperature or by

using weak promoters (Clark, 1998; Georgiou and Valax, 1999), (3)

using small-molecule additives such as glycylglycine, L-arginine

and sorbitol (Ghosh et al., 2004; Schein, 1990; Winter et al.,

2001), (4) co-expressing chaperones (Machida et al., 1998) and

(5) overexpressing the protein as a fusion protein (Makrides,

1996; Stevens, 2000). It is not very clear why only some, but

not all, proteins are soluble on overexpression. A cursory look at

the proteins, which are and are not soluble on overexpression,

reveals that the primary sequence of the protein is the most import-

ant determinant of the solubility status of the overexpressed protein.

The determinative role of the primary sequence is further confirmed

by observations that point mutations alter the solubility status of the

overexpressed protein under identical conditions (Dale et al., 1994;

Jenkins et al., 1995; Malissard and Berger, 2001; Murby et al.,

1995; Pedelacq et al., 2002; Timson and Reece, 2003).

Sequence-independent factors such as the kinetics of translation

(Cortazzo et al., 2002; Komar et al., 1999; Makrides, 1996),

absence of certain post-translational modifications (Zhang et al.,

1998) and reducing environment of the cytoplasm (Lilie et al., 1998;

Makrides, 1996) have also been found to contribute to the solubility

status in some cases.

An early attempt to determine the relationship between the amino

acid sequence with the solubility status of the overexpressed protein

was performed by Wilkinson and Harrison; they observed that

inclusion body formation is correlated, in decreasing order of cor-

relation, to charge average, turn-forming residue fraction, cysteine

fraction, proline fraction, hydrophilicity and molecular weight

(Davis et al., 1999; Wilkinson and Harrison, 1991). Spurred by

structural genomics initiatives, additional investigations have

been undertaken in this direction. Gerstein and coworkers analyzed

562 proteins of Methanobacterium thermoautotrophicum using

genetic algorithms and several machine learning algorithms includ-

ing decision tress and support vector machines (SVMs) (Bertone

et al., 2001): the parameters found critical by this study are residues

Glu, Ile, Thr and Tyr, combined composition of basic (Arg, Lys),

acidic (Asp, Glu) and aromatic (Phe, Trp, Tyr) residues, acidic

residues with their amides (Asn, Asp, Gln, Glu), presence of signal

sequence and hydrophobic residues, secondary structural features,

and low complexity regions. In a subsequent study, Gerstein and

coworkers analyzed 27 267 protein targets selected for structural

genomics studies and found serine percentage composition to be the
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major determinant of solubility (Goh et al., 2004). Luan and

coworkers performed expression experiments on 10 167 ORFs of

Caenorhabditis elegans (Luan et al., 2004): with one expression

vector and one E.coli strain, expression was observed for 4854

ORFs of which only 1536 were soluble. Analysis of these 1536

sequences revealed that the hydrophobicity is a key-determining

factor for an ORF to yield a soluble expression product. It is to be

noted here that the expression conditions and the nature of proteins

(e.g. thermophilic/mesophilic, cytosolic/membrane-bound, etc.)

analyzed are different in these studies. This could probably be

the reason for the apparent dissimilarity between the results of

the various studies.

Recently, a study was undertaken by Idicula-Thomas and Balaji

to identify the sequence-dependent features that correlate to solu-

bility of proteins when overexpressed in E.coli under normal growth

conditions (Idicula-Thomas and Balaji, 2005). The proteins used in

this study were based on literature reports on the solubility on

overexpression in E.coli and included both thermophilic and meso-

philic proteins from viruses, prokaryotes and eukaryotes. The study

revealed that the aliphatic index, the frequency of occurrence of

Asn, Thr and Tyr, and the dipeptide- and tripeptide-compositions

significantly vary between the soluble and inclusion body-forming

proteins.

SVM (Vapnik, 1995) has gained popularity over other machine

learning methods for interpreting biological data (Bhasin and

Raghava, 2004; Brown et al., 2000; Byvatov and Schneider,

2003; Ding and Dubchak, 2001; Furey et al., 2000; Jaakkola

et al., 2000; Natt et al., 2004, Zien et al, 2000) because of their

ability to very effectively handle noise and large datasets/input

spaces (Zavaljevski et al., 2002). In the present study, an SVM-

based algorithm has been developed to predict the solubility-on-

overexpression based on the features identified by Idicula-Thomas

and Balaji (2005). In addition, the effect of using the residue-,

dipeptide- and tripeptide-compositions on classification has also

been investigated. The use of SVM is especially appropriate in

this case since the use of dipeptide- and tripeptide-compositions

for classification results in a large increase in the number of features

(by 400 and 8000, respectively).

SYSTEMS AND METHODS

Datasets

The proteins for the analyses were chosen based on literature reports on their

solubility on overexpression in E.coli under normal growth conditions

i.e. 37�C, without the use of solubility enhancing fusion tags or chaperone

co-expression. These criteria were used to ensure that the observed solubility

on overexpression is mainly owing to its sequence features rather than

sequence-independent factors. Only 62 proteins could be obtained with

these criteria for the dataset of soluble proteins (dataset S). It is to be

noted that most of the proteins form inclusion bodies on overexpression

in E.coli; only few proteins are found in the soluble fraction. Hence, the

number of proteins that are available to populate the dataset of soluble

proteins is meager. Even though a large number of proteins have been

reported to form inclusion bodies on overexpression, the size of dataset I

was restricted to 130, since a large difference in the number of proteins

between the two datasets may hamper the SVM training procedure (Lin et

al., 2002). Both the datasets S and I included thermophilic as well as

mesophilic proteins from viruses, prokaryotes and eukaryotes. The accession

numbers of the proteins included in the two datasets are given in Table S1.

The proteins were randomly split into training and test datasets. The

training dataset comprised 87 inclusion body-forming and 41 soluble pro-

teins (total 128). The test dataset comprised 43 inclusion body-forming and

21 soluble proteins (total 64). The inclusion body-forming and soluble pro-

teins are in approximately 2:1 ratio in the each of the two datasets. This ratio

is approximately same as the ratio of the sizes of datasets I and S.

Representation of the proteins as vectors of fixed length

Pattern recognition algorithms require the proteins to be represented as fixed

length vectors. Three different models, incorporating sequence information

at various levels, were considered while performing the simulations. In order

to investigate the effect of a particular class of amino acids on solubility, the

20 amino acids were grouped into various classes based on certain common

properties and the composition of the reduced sets of amino acids were also

considered for classification (Table 1). The six physicochemical properties

of the protein, viz., length of the protein (L), hydropathic index (GRAVY),

aliphatic Index (AI), instability index of the entire protein (IIP), instability

index of N-terminus (IIN) and net charge (NC) were included along with

single residue and dipeptide frequencies. This resulted in a dataset size of

446 features: 20 reduced alphabet sets (Table 1), 6 physicochemical prop-

erties (as above), 20 residues, 400 dipeptides. Details of calculating the

various physicochemical parameters are included in Supplementary Data.

Simulations were also performed by including tripeptide-composition (i.e.

by including 8000 additional features) or by deleting dipeptide-composition

(i.e. by decreasing 400 features). These three models were trained using the

SVM algorithm.

ALGORITHM

Support vector machines for classification

SVMs are a class of machine learning algorithms that can perform

pattern recognition and regression based on the theory of statistical

learning and the principle of structural risk minimization (Vapnik,

1995, Muller et al., 2001). SVM tries to locate the hyperplane that

maximally separates the training datasets by maximizing the margin

between them. It non-linearly transforms the original input space

into a higher-dimensional feature space by means of kernel func-

tions. By doing so, the data become linearly separable in a high-

dimensional feature space (Gunn, 1997; Kulkarni et al., 2004).

The training dataset is of the form {(xi, yi)}i¼1,2,. . .,N. Here xi is the
vector representing the sequence-dependent features for the i-th

protein in the training dataset, yi is the corresponding class of

the protein and N is the total number of proteins in the training

dataset. For soluble proteins yi¼ +1 and for inclusion body-forming

proteins yi ¼�1; this assignment regards the soluble proteins as the

Table 1. Summary of the reduced alphabet sets used in the study

Property Reduced class Vector size References

Conformational

similarity

[CMQLEKRA], [P],

[ND], [G], [HWFY],

[S], [TIV]

7 Chakrabarti and

Pal (2001)

Hydrophobicity [CFILMVW], [AG],

[PH], [EDRK],

[NQSTY]

5 Rose et al.

(1985)

BLOSUM50

substitution matrix

[FWY], [CILMV],

[H], [AG], [ST],

[EDNQ], [KR], [P]

8 Murphy et al.

(2000)
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positive class and hence the number of true positives for the algo-

rithm is the number of soluble proteins getting classified correctly in

the test dataset. The SVM-based classification is dependent on the

sign of f(x), which is calculated as

f ðxÞ ¼
Xm

i¼1

yiaiKðxi‚xÞ þ b

where m is the number of input data having non-zero values of

Lagrange multipliers (ai) (usually less than N) obtained by solving a

quadratic optimization problem, K(xi, x) is the kernel matrix and b is

the bias term. Kernel matrix calculations are performed with kernel

functions. The Gaussian Radial Basis Function kernel was exclus-

ively used in the computations (Gunn, 1997; Burges, 1998).

The codes for all the algorithms were developed in-house. SVM

performance was compared with one of the standard packages i.e.

LIBSVM-2.6 (Chang and Lin, 2001, www.csie.ntu.edu.tw/~cjlin/

libsvm) and since both the codes were performing equally well

except for the speed of computations, in-house codes were used

for all the computations. Use of in-house code, in addition, enabled

the extraction of the magnitude of f(x).

The following stepwise procedure was employed in the simula-

tions to implement the algorithm:

(1) Get the protein sequence data.

(2) Assign labels—soluble proteins: positive class; insoluble

proteins: negative class.

(3) Convert all the sequences to their numerical equivalents.

(4) Scale the features to zero mean and SD 1.

(5) Partition the data as training and test sets.

(6) Run SVM classifier on training set.

(7) Run SVM classifier on the test set to assess the generalization.

In a separate simulation, we tried steps 5–7 with only 20 features

that were ranked at the top (for SVM model with 446 features) with

unbalanced correlation score method. We found that classification

accuracy for this is more or less same (with 70 ± 1% classification).

In another variation, we employed the following procedure:

(1) Steps (1)–(6) are same as earlier.

(2) Add random Gaussian Noise in a feature.

(3) Observe the change in SVMdiscriminant function value f(x) to

check the sensitivity to solubility.

(4) Repeat steps (2) and (3) for all the features.

IMPLEMENTATION

Performance of SVM classifier

SVM classifier was applied to discriminate between soluble and

inclusion body-forming proteins based on the sequence-dependent

features. All the features were scaled to zero mean and SD 1. The

various user-defined parameters e.g. kernel width parameter s and

regularization parameter C were selected using 5-fold stratified

cross validation on the training dataset. Various values of s

and C were tried in the range of [0.1–5] and [0.1–1000], respect-

ively. The original class distribution (ratio of 1:2 between the sol-

uble and inclusion body-forming proteins) is approximately

maintained during the stratification procedure. The performance

of the algorithm was tested on the unseen test dataset after training

it with optimal parameters.

To start with, the SVM classifier was trained with 46 features

comprising 20 reduced alphabet sets (Table 1), 6 physicochemical

properties (described in the last paragraph under the Systems and

methods section) and 20 residues. The test accuracy of the classifier

was only 66%. The use of additional information in the form of

dipeptide-composition improved the accuracy of classification

yielding a value of 72% (Table 2). There was no improvement

in classification accuracy when tripeptide-composition was used

as additional information (Table 2). A possible reason for this is

that many tripeptides are underrepresented or not represented at all,

owing to the small size of the datasets. This could have created a

redundancy in the training procedure and thus had a negative impact

on the prediction accuracy (Burges, 1998). Other performance para-

meters are as shown in Table 2. ROC curve for the best classifier

(with 446 features) is shown in Figure 1. Area under ROC curve and

area under convex hull of ROC curve indicate that the classifier is

not a random classifier and the classification accuracies, which we

are getting, are reasonable.

To rule out the effect of sampling of proteins into the training and

test datasets, 50 random splits of the datasets S and I into training

and test datasets (with the same ratio of nearly 1:2 between the two

classes of proteins) were created and the three models were trained

and tested separately for each of the splits. No marked changes in

the prediction accuracy were observed in each of these cases (data

not shown) suggesting that the nature of the training and test data-

sets has not biased the prediction accuracy of the classifier.

Other than SVM, we also tried two conventional classifiers i.e.

linear logistic regression and k-nearest neighbor classifier (with

k ¼ 5, by cross validation). Both these classifiers resulted in

base level accuracy of 67% (i.e. predicted only inclusion body-

forming proteins correctly). SVM with linear kernel also resulted

in baseline accuracy of 67%. We did not include these results in

Table 2, since other than classification accuracy, all the performance

parameters are either zero or meaningless. We did not plot ROC

Table 2. Classification result on test dataset

Algorithm Number

of

features

Prediction

accuracya

(%)

Specificityb

(%)

Sensitivityc

(%)

Enrichment

factord

SVM 446 72 76 55 1.68

46 66 48 48 1.45

8446 67 67 50 1.52

aPrediction accuracy is defined as [(cs + ci)/t] · 100, where cs and ci are the number

of correctly classified soluble and inclusion body-forming proteins, respectively, and t

is the total number of proteins in the soluble and inclusion body-forming test datasets.
bSpecificity is defined as [cs/(cs+wi)]·100,where cs is as above andwi is the number of

inclusion body-forming proteins wrongly classified as soluble proteins.
cSensitivity is defined as [cs/(cs+ws)]·100,where cs is as above andws is the number of

soluble proteins wrongly classified as inclusion body-forming proteins.
dEnrichment factor (Ef) is defined as {[cs/(cs + ws)]/[s/(s + i)]}, where cs and ws are as

above and s and i are the total number of soluble and inclusion body-forming proteins,

respectively, in the respective test datasets. Ef is especially suitable for the unbalanced

datasets, where class distribution is not even. Ef > 1 indicates enrichment in the classifier

performance whereas Ef ¼ 0 indicates no effect and Ef < 1 indicates impairment to the

classifier performance (Fechner et al., 2003).
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curves for these classifiers (k-nn, linear logistic regression) since

none of them predicted any of the observations from the positive

class (soluble proteins). In case of K-NN, we further optimized the

number of neighbors and found that with increased neighbors (and

subsequently increase in classifier complexity) it is able to classify

few of the positive points with classification accuracy 67%, sens-

itivity 50%, specificity 38% and enrichment factor as 1.56.

Weighted classifiers

Owing to the fact that classes are imbalanced in the dataset, we

performed some simulations adding class-dependent weights to

regularize the learning process in K-NN and SVM. Here we con-

sidered the dataset containing 446 features. We call these classifiers

as weighted_KNN and weighted_SVM (Lin et al., 2002). The res-

ults of both these classifiers are improved as compared with their

non-weighted counterparts. The results are as follows:

Weighted_KNN: 72% classification accuracy, 57% sensitivity, 57%

specificity and enrichment factor as 1.78.

Weighted_SVM: 74% classification accuracy, 57% sensitivity, 81%

specificity and enrichment factor as 1.78.

Feature extraction

The results of our experiments have categorically indicated that

SVMs with 46 features and 8446 features do not perform well

and weighted_SVM does not show substantial improvement. So

we resort to unweighted counterpart for further analysis taking

into account the extra computational cost owing to addition of

weights. It is evident that the SVM classifier with 446 features

provides good classification performance. With a view to ascertain

whether there is a subset of most informative features among these

446 features, we employed different feature selection methods like

principal component analysis, genetic algorithm, etc. Our simula-

tions indicated that none of these algorithms could pick out inform-

ative subsets of features exhibiting satisfactory prediction accuracy.

Noting that our problem consists of a dissimilar number of positive

and negative samples and the number of features is quite high, a

feature selection algorithm, viz., unbalanced correlation score

(Weston et al., 2003) was then used. In this method, the features

in the models are ranked for their contribution to prediction of the

expression status by the following criterion:

f j ¼
X

yi¼1

Xij � l

X

yi¼�1

Xij‚

where fj represents the score (called as unbalanced correlation

score) for feature j, X is a training data matrix where rows represent

the proteins and the columns represent the sequence-dependent

features of the corresponding proteins. l is a regularization para-

meter and can be optimized using cross validation. It is evident from

the mathematical expression that the sign of the score value is the

sign of correlation with solubility. Further, a sensitivity analysis

(Daae and Ison, 1999) was performed to determine how well the

features, which have a high unbalanced correlation score, correlate

with solubility. The correlation of a feature to solubility was determ-

ined by perturbing the feature (keeping the other features constant)

and monitoring the effect of the perturbation on the number of true

positives detected by the SVM classifier. Perturbation is added in

the form of random Gaussian Noise. If the number of proteins

identified as soluble increases with positive changes in the feature

then it is inferred that the feature has positive correlation with

solubility and vice versa.

Sequence-dependent features that correlate to
solubility

Based on the unbalanced correlation score and sensitivity analysis,

the correlations of 20 highest-ranked-features (for the SVM model

with 446 features) to solubility were determined (Table 3). We ran

the SVM classifier with only these 20 top-ranked features and found

that classification accuracy is more or less same (with 70 ± 1%

classification). Thus, unbalanced correlation score feature extrac-

tion method performed better than conventional methods but could

not increase the prediction accuracy of the SVM with 446 features.

The knowledge of physicochemical parameters and the composi-

tions of residues and dipeptides that favor/disfavor solubility

(Table 3) could, however, be used in designing mutations that

would bring about the desired change in their solubility, thus war-

ranting further analysis and discussion.

Among the physicochemical properties considered, thermostabil-

ity of proteins, as represented by its aliphatic index AI, is found to be

the most crucial determinant of solubility (Table 3). This suggests

that an increase in thermostability of the proteins would enhance the

propensity for the protein to be overexpressed in a soluble form. It

has been noted that thermolabile folding intermediates, being chap-

eronin substrates, could increase the propensity to aggregate and

form inclusion bodies by exhausting the in vivo supply of chaper-

ones (King et al., 1996).

A higher instability index also appears to increase the propensity

of a protein to be overexpressed in the soluble form (Table 3). This

observation suggests that a protein with a lower in vivo half-life has

a lesser propensity to form inclusion bodies compared with proteins

with a higher in vivo half-life. The correlation between in vivo half-

life of a protein and solubility could be rationalized by the role

played by longer-lived partially folded intermediates of a protein.

These long-lived intermediates can interact with a greater chance

Figure 1. ROC Curve for SVM classifier (with 446 features).
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with other partially folded intermediates and also exhaust the lim-

ited in vivo supply of chaperones (Fink, 1998), thus contributing to

inclusion body formation.

It is observed that a higher net charge favors solubility on over-

expression (Table 3). There have been previous reports of the favor-

able role played by a higher net charge in reducing inclusion body

formation (Dale et al., 1994; Malissard and Berger, 2001; Davis

et al., 1999) and protein aggregation (Chiti et al., 2003; Monti et al.,

2004) in general. Among the positively charged residues, Arg seems

to have a positive effect on solubility. Interestingly, it is observed

that, of the negatively charged amino acids, Glu exerts a positive

influence on solubility (Table 3) whereas Asp has an opposite effect.

It is to be noted that Glu has a higher helix propensity compared

with Asp (Kallberg et al., 2001). The significance of this observa-

tion comes in light of the helix to sheet transition seen to accompany

inclusion body formation in certain cases (Przybycien et al., 1994).

An enrichment of hydrophobic residues in proteins has been

reported to be associated with an increased propensity to form

inclusion body (Luan et al., 2004). As expected, the hydrophobic

residues, viz. Cys, Met and Phe were found to hinder solubility. The

hydrophobic residues (Ile and Leu) that enhance the aliphatic index

were however found to favor solubility (Table 3) and this is also

reflected by the higher aliphatic index of soluble proteins (Idicula-

Thomas and Balaji, 2005). Apart from the hydrophobic residues, the

turn-forming residues Asn, Gly, Pro and Ser have also been reported

to favor inclusion body formation (Davis et al., 1999) and in accord-

ance with this, the residues Gly, Pro and Ser were found to be

negatively correlated to solubility in the present study also (Table 3).

Although Asn was not selected among the top 20 features to

influence solubility at the residue level, the dipeptide (Asn-Thr)

was found to negatively correlate to solubility. The dipeptides

that were found to positively correlate to solubility are His-His,

Arg-Gly, Arg-Ala and Gly-Ala (Table 3). The amino acid composi-

tion is known to influence the folding kinetics of the protein (Chan

and Dill, 1994; Socci and Onuchic, 1994), which, in turn, plays a

crucial role in deciding the propensity of the protein to form inclu-

sion bodies (Finke et al., 2000; Hoffmann et al., 2001). The know-

ledge of the mechanism by which the above-mentioned dipeptides

influence the folding kinetics of the proteins would probably help in

rationalizing their correlation to solubility.

Use of the SVM-based algorithm in engineering
mutations for enhanced solubility

In order to validate the use of the algorithm in designing mutations

for improved/altered solubility, the SVM-based predictions were

compared with the experimental observations for certain point

mutations reported in the literature. For this analysis, we employed

SVM with 446 features. It was observed that in 22 of the 23 point

mutations studied, the SVM-based algorithm could correctly predict

the change in solubility brought about by the mutation (Table 4 and

Table S2). When the results of the SVM-based prediction were

compared with the two existing models for prediction of solubility,

viz., Wilkinson-Harrison (WH) model (Davis et al., 1999) and the

solubility index (SI) based model proposed by Idicula-Thomas and

Balaji (2005), it was observed that these models could correctly

predict the change in solubility only in 7 and 16 cases, respectively,

out of the 23 point mutations studied (Table 4). Since the quantit-

ative measure of solubility of proteins in the training datasets is not

known, the changes predicted for solubility are mentioned in a

qualitative sense only. The actual prediction accuracy is very

low (21.73%) if the sign of the SVM discriminant function value

is used. This is not surprising since there is a very strong overlap

between these sequences and the classifier could predict only wild-

type proteins. However, a positive (or a negative) change in SVM

discriminant function value indicates an increase (or a decrease) in

the solubility of proteins. We used SVM owing to its strong gen-

eralization abilities. Other classifiers (k-NN and logistic regression)

resulted in baseline accuracies only and hence were not used in

mutation studies.

DISCUSSION

Pattern classification algorithms based on statistical learning para-

digms are gaining popularity in the field of biological sciences. In

the present work, SVM-based classifier has been trained to predict

the expression status of proteins in E.coli based on the sequence-

based features of these proteins. The most critical sequence-based

features for prediction of the expression status of the proteins could

be inferred from the unbalanced correlation score of these features

and the effect of these features on solubility were inferred based on

the sensitivity analysis.

The proteins considered in the present study are based on the

overexpression status of proteins as reported in the literature by

various research groups. The fraction of proteins overexpressed in

the soluble form varies for various proteins and the information on

the extent of solubility or the formation of inclusion bodies is not

available for most of the proteins. With an increase in the accurate

Table 3. Top 20 features selected by feature selection algorithm

Ranka SVM model

with 446 features

Correlation score

value

Correlation with

solubilityb

1 AI 0.55 P

2 Glu 0.32 P

3 His-His 0.28 P

4 Arg-Gly 0.26 P

5 Arg 0.25 P

6 Gly �0.38 N

7 IIP 0.24 P

8 NC 0.24 P

9 Asn-Thr �0.35 N

10 Arg-Ala 0.23 P

11 Cys �0.32 N

12 Met �0.3 N

13 Gln 0.22 P

14 Phe �0.30 N

15 Ile 0.22 P

16 Gly-Ala 0.21 P

17 IIN 0.21 P

18 Ser �0.29 N

19 Leu 0.20 P

20 Pro �0.29 N

aThe features are ranked in the descending order in relation to correlation to solubility.

The feature that is ranked one for a model was found to have the highest correlation to

solubility for the respective model.
bP denotes positive correlation with solubility and N denotes negative correlation with

solubility.
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information of the expression status of proteins, one can expect

improvements in the prediction accuracies using the SVM classifier

based on the sequence-based features of the proteins.

A few structural genomics studies aimed at the identification of

‘soluble’ proteins based on amino acid sequences have employed

large datasets, e.g. 562 (Bertone et al., 2001), 27 267 (Goh et al.,

2004) and 4854 (Luan et al., 2004) proteins. The experimental

conditions for expression of proteins such as the host strain,

temperature, media, etc. are the same within each of these studies.

However, these studies identified different features as crucial for

solubility-on-expression of a protein. The nature of proteins (e.g.

thermophilic or mesophilic, cytosolic or membrane-bound, etc.) and

the expression/overexpression conditions are critical in dictating

solubility of the protein. But, the role of the 3D structures of the

folding intermediates and that of the native protein in governing the

expression status of the proteins cannot be undermined. The

sequence-based features contributing to the solubility status are

quite subtle. Hence, a certain level of misclassification is expected

owing to the absence of the structure-based features in the SVM-

based prediction algorithm. In light of this, the 72% accuracy

(Table 2) achieved by the present SVM-based algorithm for

predicting the solubility status of proteins on overexpression

in E.coli under normal growth conditions based on sequence-

based features alone is quite significant in the absence of 3D

structure-based features. The algorithm is also able to rationalize

the experimentally observed effect of certain point mutations on

solubility of the proteins.

The SVM-based algorithm developed in the present study is

especially important for the large-scale structural genomics initiat-

ives wherein high-throughput methods are currently being

developed to identify proteins that would be overexpressed in sol-

uble fraction in E.coli (Knaust and Nordlund, 2001). The prediction

algorithm can also be helpful in replacing directed evolution

methods currently undertaken for screening protein libraries for

soluble variants (Waldo, 2003).
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Table 4. Effect of mutation on solubility on overexpression: comparison of SVM-based prediction and experimental observation

Mutation Effect of mutation on solubility

Experimental observation SVM-based predictiona SI-based predictionb WH scheme-based predictionc

HIV-1 Integrase Core Domain (Jenkins et al., 1995)

F185K Increase Increase Increase Decreased

V165K Increase Increase Increase Decreased

Nucleoside diphosphate kinase (Pedelacq et al., 2002)

A10D Increase Increase Decreased Increase

E40K Increase Increase Increase Decreased

Dihydrofolate reductase (Dale et al., 1994)

N130D Increase Increase Increase Increase

N48E Increase Increase Increase Increase

N48E/N130D Increase Increase Increase Increase

Human interferon gamma (Wetzel et al., 1991)

P122S Increase Increase Increase No changed

K128R Increase Increase Decreased No changed

K128Q/R129P Increase Increase Decreased Decreased

A123S/K125I/K130E/S132G Increase Increase Decreased Decreased

K87Q Increase Increase Increase Decreased

V79A Increase Decreased Decreased No changed

Human galactokinase (Timson and Reece, 2003)

P28K Decrease Decrease Increased Decrease

V32M Decrease Decrease Decrease No changed

G36R Decrease Decrease Decrease Decrease

T288M Decrease Decrease Decrease No changed

A384P Decrease Decrease Increased Decrease

H44Y Decrease Decrease Decrease No changed

R68C Decrease Decrease Decrease Increased

G346S Decrease Decrease Decrease No changed

G349S Decrease Decrease Decrease No changed

A198V Decrease Decrease Decrease No changed

The wild-type protein is soluble and the mutants are insoluble.
aThe solubility of a mutant is inferred to increase (or decrease) if the value of f(x) for the mutant is higher (or lower) than that of the corresponding wild-type protein.
bThis is the prediction model for solubility suggested by Idicula-Thomas and Balaji (2005).
cThis is the prediction model for solubility adopted by Davis et al. (1999).
dIn this case there is disagreement between the experimental observation and the prediction of change in solubility.
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