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Abstract

It is proved the equivalence of the compatibility condition of [A. Ramos, J. Phys.
A 44 (2011) 342001, Phys. Lett. A 376 (2012) 3499] with a condition found in
[Yadav et al., Ann. Phys. 359 (2015) 46]. The link of Shape Invariance with the
existence of a Potential Algebra is reinforced for the rationally extended Shape
Invariant potentials. Some examples onX1 andXℓ Jacobi and Laguerre cases are
given.
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1. Introduction

The concept of Shape Invariance has by now a long tradition in Quantum Me-
chanics, in the search of exactly solvable potentials. It started in the classical
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work of Infeld and Hull [1] or even in the seminal works of Schrödinger him-
self [2, 3, 4]. Later, the concept was reformulated by Gendenshteı̈n and Krive
[5, 6] as it is known today. See the relatively recent monographes [7, 8] for
an overview. The list of Shape Invariant potentials remained unchanged until
Gómez-Ullate, Kamran and Milson [9] realized that the classical orthogonal poly-
nomials can be generalized to a situation in which the lowestdegree of the poly-
nomials of the family need not to be zero. This fostered the key developments
of Quesne and collaborators [10, 11, 12, 13, 14, 15], who haveshown that it is
possible to rationally extend some types of the standard Shape Invariant poten-
tials in order to give isospectral ones. This line of research has been followed by
many authors, for example important contributions by Grandati and collaborators
[16, 17, 18, 19, 20, 21, 22] and by Odake and Sasaki [23, 24, 25,26, 27, 28].
On his side, Ramos [29, 30] has found a compatibility condition that the new
extended Shape Invariant potentials have to satisfy. Apartfrom that, in [31] it
has been considered the complex Lie algebrasl(2,C) when dealing with non-
Hermitian Hamiltonians with real eigenvalues. Later on, in[32] a group theoret-
ical approach to some extended Shape Invariant potentials has been developed,
in which another condition has to be satisfied by the seed superpotential and the
functions defining the extension. This technique was further employed by Yadav
et al. in [33]. However, they did not discuss the relation of their condition with
the previously mentioned compatibility condition of [29, 30].

The aim of this short note is to show that the compatibility condition of [29, 30]
and the condition of [32] are indeed equivalent. This has theimportant conse-
quence that the former compatibility condition is given in this way a group the-
oretical sense, and that the overall picture becomes unifiedin a common setting.
In Section 2 we prove the mentioned equivalence. In Section 3we provide some
examples. In the final section we provide an Outlook and some Conclusions.

2. Equivalence of the conditions

2.1. The compatibility condition

We briefly recall here the compatibility condition approachof [29, 30]. Given
a superpotential of the type

W (x,m) = W0(x,m) +W1+(x,m)−W1−(x,m) (1)

wherex is the coordinate of the problem under study,m is a parameter that is
transformed by translation (byf(m) = m − 1, without loss of generality), and
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W0(x,m) = k0(x) + mk1(x) is a superpotential of the affine inm type treated
by Infeld and Hull [1].W1+(x,m), W1−(x,m) are logarithmic derivatives which
moreover satisfy

W1−(x,m) =W1+(x,m− 1) (2)

In [30, Theorem 1] it has been proved that the superpotential(1) defines a Shape
Invariant pair of partner potentials through the usual Riccati equations if and only
if it is satisfied

W 2
1+(x,m) +W ′

1+(x,m) +W 2
1−(x,m) +W ′

1−(x,m)

−2W0(x,m)W1−(x,m)

+2W0(x,m)W1+(x,m)− 2W1−(x,m)W1+(x,m) = ǫ(x) (3)

whereǫ(x) is a function ofx only. Since (3) holds for all allowedm’s, in particular
it holds as well form− 1.

2.2. The group theory approach

On its side, Yadav et al. [32] have developed a group theoretical approach
to some rationally extended Shape Invariant potentials. They were inspired by
the well-known paper of Wu and Alhassid [34] and in this way not all the possi-
ble cases of affine inm Shape Invariant potentials are considered. Therefore, in
this paper we consider a slightly more general approach inspired by Miller [35]
combined with the previous two papers.

That is, we now consider theG(a, b) Potential Algebra by means of the oper-
ators

J± = e±iφ

[

±
∂

∂x
−

((

−i
∂

∂φ
±

1

2

)

F (x)−G(x)

)

−U

(

x,−i
∂

∂φ
±

1

2

)]

(4)

J3 = −i
∂

∂φ
(5)

E = 1 (6)

whereF (x), G(x) are functions ofx only,a andb are real numbers, andU
(

x,−i ∂
∂φ

±
1
2

)

is a functional operator. The commutation relations

[J+, E] = 0 , [J−, E] = 0 , [J3, E] = 0 , (7)

[J3, J+] = J+ , [J3, J−] = −J− , (8)
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are satisfied automatically. The commutation relation

[J+, J−] = −2aJ3 − 2bE (9)

is satisfied (when evaluated in a basis of eigenfunctions of the Casimir [35]C =
aJ2

3 − aJ3 + 2bJ3E − J+J− = aJ2
3 + aJ3 + 2bJ3E + 2bE − J−J+ andJ3,

ψcm(x)e
imφ) if and only if three conditions do. The first two are analogous to the

conditions of [35], and the third one is an additional condition. They are:

F ′(x) + F 2(x) = a , G′(x) + F (x)G(x) = b (10)

and

U2

(

x,m−
1

2

)

− U ′

(

x,m−
1

2

)

+2U

(

x,m−
1

2

)(

F (x)

(

m−
1

2

)

−G(x)

)

−U2

(

x,m+
1

2

)

− U ′

(

x,m+
1

2

)

−2U

(

x,m+
1

2

)(

F (x)

(

m+
1

2

)

−G(x)

)

= 0 (11)

2.3. Relation between the two approaches

The aim of this note is to establish the relation between (11)and (2), (3). So let
us start from the left hand side of relation (11). Performinga change of parameter
m, without loss of generality,m→ m−

1
2
, we obtain

U2(x,m− 1)− 2G(x)(U(x,m − 1)− U(x,m))− U2(x,m)

+2F (x)((m− 1)U(x,m− 1)−mU(x,m))

−U ′(x,m− 1)− U ′(x,m) (12)

Then, linking the notations in the Subsection 2.1 with thoseof Subsection 2.2 in
the following way (see eqs. (34) and (35) in [32])

F (x) = k1(x) (13)

G(x) = −k0(x) (14)

U(x,m) =W1+(x,m)−W1−(x,m) (15)

U(x,m− 1) = W1+(x,m− 1)−W1−(x,m− 1) (16)
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we obtain

−2(k0(x) + (m− 1)k1(x))(W1−(x,m− 1)−W1+(x,m− 1))

+(W1−(x,m− 1)−W1+(x,m− 1))2

+2(k0(x) +mk1(x))(W1−(x,m)−W1+(x,m))− (W1−(x,m)−W1+(x,m))2

+W ′

1−(x,m− 1) +W ′

1−(x,m)−W ′

1+(x,m− 1)−W ′

1+(x,m) (17)

Then, using (3) form andm− 1, the expression simply reduces to

−2W ′

1+(x,m− 1) + 2W ′

1−(x,m) (18)

which, by virtue of (2), vanishes identically. The steps canbe reversed in a natural
way so it is proved the equivalence of (2), (3) with (11).

3. Examples

In this Section we illustrate the applicability of the previous relation in sev-
eral instances, including extensions of Shape Invariant potentials withX1 andXℓ

Jacobi and Laguerre polynomials.

3.1. Case ofk0(x) +mk1(x) = −
β
c
coth(cx) + d

sinh(cx)
+mc coth(cx),X1 exten-

sion

For this casek0(x) = −G(x) = −
β
c
coth(cx) + d

sinh(cx)
andk1(x) = F (x) =

c coth(cx) wherex ∈ (0,∞), c > 0, β, d are constants. This example is a slight
generalization of one appeared first in [11, 12] and is a slight correction of one
appeared in [29]. We can take

W1+(x,m) =
2c2d sinh(cx)

−2β + c2(2m+ 1) + 2cd cosh(cx)
(19)

W1−(x,m) =
2c2d sinh(cx)

−2β + c2(2m− 1) + 2cd cosh(cx)
(20)

and then with the identifications above it is readily checkedthat (2), (3) are satis-
fied. Likewise, (10) is satisfied witha = c2 andb = β, and (11) is also satisfied.
This example leads to a pair of Shape Invariant partner potentials which are non-
singular ifβ is real,d < 0 andm < 2β−c2−2cd

2c2
or if d > 0 whenm > 2β+c2−2cd

2c2
.
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3.2. Case ofk0(x) +mk1(x) =
ωx
2
+ d

x
+ m

x
, radial oscillator withX1 extension

For this casek0(x) = −G(x) = ωx
2

+ d
x

and k1(x) = F (x) = 1
x

where
x ∈ (0,∞), andω > 0, d > 0 are two constants. This example is a slight
generalization of one appeared first in [10] and is a modification of one appeared
in [29]. We can take

W1+(x,m) = −
2ωx

1 + 2d+ 2m− ωx2
(21)

W1−(x,m) = −
2ωx

−1 + 2d+ 2m− ωx2
(22)

and then with the identifications above it is readily checkedthat (2), (3) are satis-
fied. Likewise, (10) is satisfied witha = 0 andb = −ω, and (11) is also satisfied.
This example leads to a pair of Shape Invariant partner potentials which are non-
singular ifm < −

1
2
(1 + 2d).

3.3. Case ofk0(x) +mk1(x) = −
β
c
tan(cx) + d

cos(cx)
−mc tan(cx),X1 extension

For this casek0(x) = −G(x) = −
β
c
tan(cx) + d

cos(cx)
andk1(x) = F (x) =

−c tan(cx) wherex ∈
(

−
π
2c
, π
2c

)

, c > 0, β, d are constants. This example is
a slight generalization of one appeared first in [10] and is a modification of one
appeared in [29]. We can take

W1+(x,m) = −
2c2d cos(cx)

2β + c2(1 + 2m)− 2cd sin(cx)
(23)

W1−(x,m) =
2c2d cos(cx)

−2β + c2(1− 2m) + 2cd sin(cx)
(24)

and then with the identifications above it is readily checkedthat (2), (3) are satis-
fied. Likewise, (10) is satisfied witha = −c2 andb = β, and (11) is also satisfied.
This example leads to a pair of Shape Invariant partner potentials which are non-
singular ifβ is real,d > 0 andm < −2β−c2−2cd

2c2
or if d < 0 whenm > 2β+c2−2cd

2c2
,

or also ifβ is real,d > 0 andm > −2β+c2+2cd
2c2

or if d < 0 whenm < −2β−c2+2cd
2c2

.

3.4. Case ofk0(x) +mk1(x) = −
B

sinh(x)
+m coth(x), Generalized P̈osch–Teller

potential withXℓ extension

For this casek0(x) = −G(x) = −
B

sinh(x)
andk1(x) = F (x) = coth(x) where

x ∈ (0,∞), B is a real constant. This example appeared in [32], inspired in
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[11, 12]. We can take

W1+(x, ℓ,m) =
1

2
(ℓ− 2B − 1) sinh(x)

P
(−B+m+1/2,−B−m−1/2)
ℓ−1 (cosh(x))

P
(−B+m−1/2,−B−m−3/2)
ℓ (cosh(x))

(25)

W1−(x, ℓ,m) =
1

2
(ℓ− 2B − 1) sinh(x)

P
(−B+m−1/2,−B−m+1/2)
ℓ−1 (cosh(x))

P
(−B+m−3/2,−B−m−1/2)
ℓ (cosh(x))

(26)

whereP (α,β)
ℓ (x) denotes the ordinaryℓ-th Jacobi polynomial. Then, with the iden-

tifications above it is readily checked that (2), (3) are satisfied. Likewise, (10) is
satisfied witha = 1 andb = 0, and (11) is also satisfied. This example leads to a
pair of Shape Invariant partner potentials which are non-singular ifB < −

1
2

and
1
2
(1 + 2B) < m < −

1
2
(1 + 2B) (with these conditions it is ensured that the roots

of the Jacobi polynomials in the denominators above are on the interval(−1, 1)
and thencosh(x) takes values in[1,∞)).

3.5. Case ofk0(x)+mk1(x) = iB
cosh(x)

+m tanh(x), PT symmetric complex Scarf-
II with Xℓ extension

For this casek0(x) = −G(x) = iB
cosh(x)

andk1(x) = F (x) = tanh(x) where
x ∈ (−∞,∞), B is a real constant andi is the imaginary unit. This example
appeared in [32], inspired in [11, 12, 31, 36]. We can take

W1+(x, ℓ,m) =
1

2
i(ℓ− 2B − 1) cosh(x)

P
(−B+m+1/2,−B−m−1/2)
ℓ−1 (i sinh(x))

P
(−B+m−1/2,−B−m−3/2)
ℓ (i sinh(x))

(27)

W1−(x, ℓ,m) =
1

2
i(ℓ− 2B − 1) cosh(x)

P
(−B+m−1/2,−B−m+1/2)
ℓ−1 (i sinh(x))

P
(−B+m−3/2,−B−m−1/2)
ℓ (i sinh(x))

(28)

Then, with the identifications above it is readily checked that (2), (3) are satisfied.
Likewise, (10) is satisfied witha = 1 andb = 0, and (11) is also satisfied. This ex-
ample leads to a pair of Shape Invariant partner potentials which are non-singular
(except maybe atx = 0) because the argument of the Jacobi polynomials above
is purely imaginary.
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3.6. Case ofk0(x) +mk1(x) =
ωx
2
+ m

x
, radial oscillator withXℓ extension

For this casek0(x) = −G(x) = ωx
2

andk1(x) = F (x) = 1
x

wherex ∈ (0,∞)
andω > 0. This example is a slight modification of one appeared first in[10, 23].
We can take

W1+(x, ℓ,m) = ωx
L
(−m−1/2)
ℓ−1

(

−
ωx2

2

)

L
(−m−3/2)
ℓ

(

−
ωx2

2

)
(29)

W1−(x, ℓ,m) = ωx
L
(−m+1/2)
ℓ−1

(

−
ωx2

2

)

L
(−m−1/2)
ℓ

(

−
ωx2

2

)
(30)

where nowL(α)
ℓ (x) denotes theℓ-th (associated) Laguerre polynomial. With the

identifications above it is readily checked that (2), (3) aresatisfied. Likewise, (10)
is satisfied witha = 0 andb = −ω, and (11) is also satisfied. This example leads
to a pair of Shape Invariant partner potentials which are non-singular since the
roots of the Laguerre polynomials of the denominators abovelie in (0,∞), and
we have taken explicitly negative arguments in them by meansof −ωx2

2
, see also

[23].

4. Conclusions and outlook

We have demonstrated, in a general way and by means of examples, the va-
lidity of the equivalence of the compatibility conditions (2), (3) with the group
theoretical condition (11). Thus both approaches are linked in a clear way. The
first two relations establish the Shape Invariance condition of the by now well-
known rationally extended potentials, and the last one is one of the conditions for
the closing of the extended potential algebraG(a, b), inspired by Miller [35]. Thus
extended Shape Invariance is linked with the closing of a Potential Lie Algebra,
initially being an approach known at least since the works [35, 34] for some of the
classical cases of Infeld and Hull [1]. Thus the classical results are shown to be
valid in a new situation. As a possible extension of the methods employed here,
we could try to model rationally extended Shape Invariant potentials with two
[23, 24, 25] or more parameters subject to translation with aPotential Algebra,
using perhaps the insight of [37]. This is work to be done in another paper(s).
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[9] D. Gómez-Ullate, N. Kamran, R. Milson,J. Math. Anal. Appl.359
(2009) 352.

[10] C. Quesne,J. Phys. A: Math. Theor.41 (2008) 392001.

[11] C. Quesne,SIGMA5 (2009) 084.

[12] B. Bagchi, C. Quesne, R. Roychoudhury,Pramana J. Phys.73 (2009)
337.

[13] C. Quesne,Modern Phys. Lett. A26 (2011) 1843.

[14] C. Quesne,SIGMA8 (2012) 080.

[15] C. Quesne,Internat. J. Modern Phys. A27 (2012) 1250073.

[16] Y. Grandati,Ann. Phys.326 (2011) 2074.

[17] Y. Grandati,Ann. Phys.327 (2012) 2411.

[18] Y. Grandati,Phys. Lett. A376 (2012) 2866.

[19] Y. Grandati,Phys. Lett. A378 (2014) 1755.

9



[20] Y. Grandati, A. BérardAnn. Phys.325 (2010) 1235.

[21] Y. Grandati, A. BérardJ. Engrg. Math.82 (2013) 161.
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