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Abstract

It is proved the equivalence of the compatibility condition of [A. Ramos, J. Phys.
A 44 (2011) 342001, Phys. Lett. A 376 (2012) 3499] with a condition found in
[Yadav et al., Ann. Phys. 359 (2015) 46]. The link of Shape Invariance with the
existence of a Potential Algebra is reinforced for the rationally extended Shape
Invariant potentials. Some examples&nand.X, Jacobi and Laguerre cases are
given.
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1. Introduction

The concept of Shape Invariance has by now a long tradition in Quantum Me-
chanics, in the search of exactly solvable potentials. It started in the classical
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work of Infeld and Hull [1] or even in the seminal works of Satinger him-
self [2, 3, 4]. Later, the concept was reformulated by Gesttsin and Krive
[5, 6] as it is known today. See the relatively recent monples [7, 8] for
an overview. The list of Shape Invariant potentials reméinachanged until
Gomez-Ullate, Kamran and Milson [9] realized that the sieal orthogonal poly-
nomials can be generalized to a situation in which the lowegtee of the poly-
nomials of the family need not to be zero. This fostered thedevelopments
of Quesne and collaborators [10, 11, 12, 13, 14, 15], who Baesvn that it is
possible to rationally extend some types of the standarg&havariant poten-
tials in order to give isospectral ones. This line of reskedras been followed by
many authors, for example important contributions by Gedirehd collaborators
[16, 17, 18, 19, 20, 21, 22] and by Odake and Sasaki [23, 242@527, 28].
On his side, Ramos [29, 30] has found a compatibility conditihat the new
extended Shape Invariant potentials have to satisfy. Apam that, in [31] it
has been considered the complex Lie algefifa, C) when dealing with non-
Hermitian Hamiltonians with real eigenvalues. Later on38] a group theoret-
ical approach to some extended Shape Invariant poten@aldben developed,
in which another condition has to be satisfied by the seedrpatential and the
functions defining the extension. This technique was furémeployed by Yadav
et al. in [33]. However, they did not discuss the relationtdit condition with
the previously mentioned compatibility condition of [29]3

The aim of this short note is to show that the compatibilitgaition of [29, 30]
and the condition of [32] are indeed equivalent. This hasitigortant conse-
guence that the former compatibility condition is givenhmstway a group the-
oretical sense, and that the overall picture becomes unifiaccommon setting.
In Section 2 we prove the mentioned equivalence. In Sectiwe provide some
examples. In the final section we provide an Outlook and sooreldsions.

2. Equivalence of the conditions

2.1. The compatibility condition

We briefly recall here the compatibility condition approath29, 30]. Given
a superpotential of the type

W(z,m) = Wy(z,m)+ Wii(x,m) — Wi_(x,m) (1)

wherez is the coordinate of the problem under study,s a parameter that is
transformed by translation (bf(m) = m — 1, without loss of generality), and



Wo(z,m) = ko(x) + mky(x) is a superpotential of the affine in type treated
by Infeld and Hull [1]. Wy (z, m), W;_(x, m) are logarithmic derivatives which
moreover satisfy
W1_<.T,m> = Wl—i-(x?m_ 1) (2)

In [30, Theorem 1] it has been proved that the superpotefifjalefines a Shape
Invariant pair of partner potentials through the usual Riicequations if and only
if it is satisfied

WE (x,m) + Wi (x,m) + Wi (z,m) + Wi_(z,m)

—2Wo(x, m)Wq_(x, m)

+2Wo(z, m)Wii(x,m) — 2Wi_(z,m)Wii(x,m) = e(x) (3)

wheree(x) is a function ofr only. Since (3) holds for all allowed’s, in particular
it holds as well form — 1.

2.2. The group theory approach

On its side, Yadav et al. [32] have developed a group thealetipproach
to some rationally extended Shape Invariant potentialsey Weere inspired by
the well-known paper of Wu and Alhassid [34] and in this way albthe possi-

ble cases of affine im Shape Invariant potentials are considered. Therefore, in

this paper we consider a slightly more general approachratsjpy Miller [35]
combined with the previous two papers.
That is, we now consider th&(a, b) Potential Algebra by means of the oper-

ators
T = ot [i—% - ((46% + %) Fla) - G(x))

0 1
U (x, _Zﬁ_gb + 5)] (4)
.0
J3 = —7,8—¢ (5)
E =1 (6)

whereF'(z), G(x) are functions of only, « andb are real numbers, arid <:c, —i= £
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)
is a functional operator. The commutation relations

UL E =0, [J.E =0, [JsE =0, )
[J?n J—i—] =Jy, [J?n J—] =—-J, (8)
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are satisfied automatically. The commutation relation
[, J_] = —2aJ; — 2bE 9)

is satisfied (when evaluated in a basis of eigenfunctioneeflasimir [35]C' =
aJi — aJs + 20J3E — JyJ_ = aJi + aJs + 20J3E + 20E — J_J, and Js,
Ve (2)e?™?) if and only if three conditions do. The first two are analogtaithe
conditions of [35], and the third one is an additional coiodit They are:

F'(z)+ F*(z)=a, G'(z)+ F(z)G(x)="0 (10)

and

~U? (a:,m+ %) -U (a:,m+ %)
—2U (:):,m + %) (F(x) (m + %) - G(a:)) =0 (11)

2.3. Relation between the two approaches

The aim of this note is to establish the relation betweendhd)(2), (3). So let
us start from the left hand side of relation (11). Performarchange of parameter
m, without loss of generalityp — m — % we obtain

U?(z,m —1) = 2G(z)(U(z,m — 1) — U(z,m)) — U*(z,m)
+2F(z)((m — 1)U(x,m — 1) — mU(x,m))
~U'(x,m —1) = U'(z,m) (12)

Then, linking the notations in the Subsection 2.1 with thokBubsection 2.2 in
the following way (see eqs. (34) and (35) in [32])

F(x) = ki (2) (13)
G(x) = —ko(x) (14)
U(z,m) = Wii(z,m) — Wi_(z,m) (15)
Ulx,m—1)=Wi(z,m—1)—Wi_(x,m—1) (16)



we obtain

“9(ky() + (m — Dka(@)(Wr_(,m — 1) — W (,m — 1))

+(Wi_(x,m — 1) — Wi (z,m — 1))?

+2(ko(x) + mky (2)) (Wi (z,m) = Wiy (z,m)) — (Wi (z,m) = Wiy (z,m))?
+Wi_(zx,m — 1)+ Wi_(x,m) — Wi, (x,m — 1) — W{_(z,m) a7)

Then, using (3) forn andm — 1, the expression simply reduces to
—2W{, (x,m — 1)+ 2W{_(x,m) (18)

which, by virtue of (2), vanishes identically. The steps bameversed in a natural
way so it is proved the equivalence of (2), (3) with (11).

3. Examples

In this Section we illustrate the applicability of the prews relation in sev-
eral instances, including extensions of Shape Invariatgrgials with X, and X,
Jacobi and Laguerre polynomials.

3.1. Case oky(x) + mky(z) = —% coth(czx) +
sion
For this casé(zr) = —G(z) = —% coth(cx) + Smh(cm andk(x) = F(z) =
ccoth(cx) wherex € (0,00), ¢ > 0, 8, d are constants. This example is a slight
generalization of one appeared first in [11, 12] and is a skghrection of one
appeared in [29]. We can take

+ mccoth(cx), X, exten-

smh(c:v)

2c%d sinh(cx)

W _ 19

1+ (2, m) =26+ 2(2m + 1) + 2cd cosh(cx) (19)
2¢%d sinh(cx)

—208 + c2(2m — 1) + 2cd cosh(cz)

Wl— ('Ta m) (20)
and then with the identifications above it is readily checked (2), (3) are satis-
fied. Likewise, (10) is satisfied with = ¢ andb = 3, and (11) is also satisfied.
This example leads to a pair of Shape Invariant partner piatenwvhich are non-
singular if 3 is real,d < 0 andm < =272 orif d > 0 whenm > 242



3.2. Case ofy(z) + mki(z) = £ + ¢ + 2, radial oscillator with X; extension
For this caséiy(z) = —G(z) = % + ¢ andk(z) = F(z) = L where

x € (0,00), andw > 0, d > 0 are two constants. This example is a slight

generalization of one appeared first in [10] and is a modiboadf one appeared

in [29]. We can take

2wx
W = — 21
2
Wi (z,m) = hadad (22)

1+ 2d+ 2m — wa?

and then with the identifications above it is readily checlted (2), (3) are satis-
fied. Likewise, (10) is satisfied witlh= 0 andb = —w, and (11) is also satisfied.
This example leads to a pair of Shape Invariant partner piatenvhich are non-
singular ifm < —1(1 + 2d).

3.3. Case ofy(z) + mki(z) = —2 tan(cr) + —L—~ — mctan(cr),X; extension

cos(cz)

For this casek(z) = —G(z) = —% tan(ce) + iy andki(z) = F(z) =

—ctan(cz) wherez € (—%,Z), ¢ > 0, 3,d are constants. This example is

a slight generalization of one appeared first in [10] and isodification of one
appeared in [29]. We can take

B 2c%d cos(cx)
Wip(z,m) = _26 + 2(1 + 2m) — 2cd sin(cx) (23)

B 2c%d cos(cr)
Wi (z,m) = —26 + (1 — 2m) + 2cd sin(cx) (24

and then with the identifications above it is readily checltet (2), (3) are satis-
fied. Likewise, (10) is satisfied with= —c? andb = 3, and (11) is also satisfied.
This example leads to a pair of Shape Invariant partner piatenwhich are non-

singular if 3 is real,d > 0 andm < =22=¢=2 orif d < 0 whenm > 22+<-2cd

2c2 2c2 '

or also if 3 is real,d > 0 andm > %ﬁ“cd orif d < 0 whenm < ‘2’3%2”“.
3.4. Case ofy(x) + mky(z) = —ﬁ + m coth(z), Generalized Bsch—Teller
potential with.X, extension
For this caséiy(v) = —G(x) = — 535y andki(z) = F(z) = coth(x) where

x € (0,00), B is a real constant. This example appeared in [32], inspined i



[11, 12]. We can take

1 PZ(_—IB—i-m—i—l/Z,—B—m—l/Z) (cosh(z))
Wii(x,l,m) = =l —2B —1)sinh(x
1+( ) 2( ) ( )PZ(—B-i-m—l/Z,—B—m—S/Z) (COSh(l‘))
(25)
' P(_—B+m—1/2,—B—m+1/2) (COSh(l’))
(£ —2B — 1) sinh(z) Z(—lB+m—3/2 —B—m—1/2)
P, ’ (cosh(x))

(26)

Wl_(ﬂf, g, m) =

1
2

wherePZ(“’B)(x) denotes the ordinartth Jacobi polynomial. Then, with the iden-
tifications above it is readily checked that (2), (3) aressied. Likewise, (10) is
satisfied witha = 1 andb = 0, and (11) is also satisfied. This example leads to a
pair of Shape Invariant partner potentials which are nogudar if B < —% and
2(14+2B) < m < —1(1 + 2B) (with these conditions it is ensured that the roots
of the Jacobi polynomials in the denominators above are erintierval(—1, 1)

and thercosh(z) takes values ifil, c0)).

3.5. Case ok (z)+mk;(z) = ﬁ% +m tanh(x), PT symmetric complex Scarf-
Il with X, extension

For this casé(z) = —G(z) = ﬁB@) andk,(z) = F(z) = tanh(z) where
x € (—o0,00), B is a real constant andis the imaginary unit. This example

appeared in [32], inspired in [11, 12, 31, 36]. We can take

(—B+m+1/2,—~B-m—1/2) /. _.
1. 1 (isinh(x))
Wii(x,l;m) = —i({ —2B —1)cosh(z)
1+ 9 PZ(—B+m—1/2,—B—m—3/2) (i sinh(x))
(27)
(=B+m—1/2,—B—m+1/2) /. .
1. 1 (isinh(x))
Wi_(z,¢,m) = =i({ —2B —1)cosh(x)
! 9 PZ(—B+m—3/2,—B—m—1/2) (i sinh(z))
(28)

Then, with the identifications above it is readily checkedat (), (3) are satisfied.
Likewise, (10) is satisfied with = 1 andb = 0, and (11) is also satisfied. This ex-
ample leads to a pair of Shape Invariant partner potentialslware non-singular
(except maybe at = 0) because the argument of the Jacobi polynomials above
is purely imaginary.



3.6. Case ofy(x) +mk(z) = % + =, radial oscillator with X, extension
For this caséi(z) = —G(z) = £ andk:(z) = F(z) = 1 wherex € (0, 00)
andw > 0. This example is a slight modification of one appeared firgt @ 23].

We can take
[ —m—1/2 wa?
é—l /2 < 2 )

L ()
Lé:rln-i-l/Q) <_ waz)
L ()

WH_(«T,& m) = wx (29)

Wi_(z,0,m) = wx (30)

where nowLéa)(x) denotes thé-th (associated) Laguerre polynomial. With the
identifications above it is readily checked that (2), (3)satsfied. Likewise, (10)

is satisfied with, = 0 andb = —w, and (11) is also satisfied. This example leads
to a pair of Shape Invariant partner potentials which are-singular since the
roots of the Laguerre polynomials of the denominators albevia (0, o), and

we have taken explicitly negative arguments in them by mea‘ans“%Q, see also
[23].

4. Conclusions and outlook

We have demonstrated, in a general way and by means of exgntipdeva-
lidity of the equivalence of the compatibility condition®)( (3) with the group
theoretical condition (11). Thus both approaches are tinkea clear way. The
first two relations establish the Shape Invariance conuitibthe by now well-
known rationally extended potentials, and the last one ésafrthe conditions for
the closing of the extended potential algebi@, b), inspired by Miller [35]. Thus
extended Shape Invariance is linked with the closing of &Ratl Lie Algebra,
initially being an approach known at least since the works 88}] for some of the
classical cases of Infeld and Hull [1]. Thus the classicalilts are shown to be
valid in a new situation. As a possible extension of the mashemployed here,
we could try to model rationally extended Shape Invariarteptals with two
[23, 24, 25] or more parameters subject to translation wiBogential Algebra,
using perhaps the insight of [37]. This is work to be done iothar paper(s).
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