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ABSTRACT

We consider a PT-symmetric partner to Khare-Mandal’s recently proposed non-Hermitian

potential with complex eigenvalues. Our potential, which is quasi-exactly solvable, is

shown to possess only real eigenvalues.
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Exploration of non-Hermitian Hamiltonians, in particular the PT-symmetric ones, is

currently a topic of active research interest ( see for example, [1]-[14]). As is well known,

PT-symmetric Hamiltonians are conjectured [15] to preserve the reality of their bound

state eigenvalues except possibly for situations when PT may be spontaneously broken.

It should be noted that PT-invariance in itself is not a sufficient condition for the Hamil-

tonian to possess an entirely real spectrum [1, 2].

Recently, Khare and Mandal (KM) have enquired [9] into the invariance of a non-

Hermitian Hamiltonian under the combined operations of a complex shift (x → a − x,

a = iπ
2
) and time reversal (p→ −p, i→ −i) symmetries and have argued, by considering a

specific model potential, that the quasi-exactly solvable eigenvalues can emerge as complex

conjugate pairs if one of the potential parameters is an even integer or if it is an odd integer

and, in addition, the other potential parameter is large enough. They also identify their

complex shift with that of parity and as such look upon their potential as the one enjoying

PT-symmetry :

V (x) = − (ζ cosh 2x− iM)2 (1)

where the parameter ζ is real and M is restricted to integer values only.

We wish to point out in this note that although the above potential is invariant under

the aforesaid transformations x→ a−x, and i→ −i as rightly claimed by KM, it is non-

PT-invariant because with ‘a’ imaginary these transformations do not commute between

themselves. We also observe that the potential (1) does admit of a PT-symmetric partner

namely

V (x) = − (ζ sinh 2x− iM)2 (2)

(where, as in (1), ζ is real and M an integer) which, as can be easily checked, is invariant

under the joint action of parity (x → −x) and time reversal (i → −i). Further, it is

quasi-exactly solvable as we demonstrate below.

We begin by considering simultaneously the KM potential (1) and its modified version

(2). The corresponding Hamiltonians are (h̄ = 2m = 1) :

H(+) = −
d2

dx2
− (ζ cosh 2x− iM)2 (3)
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H(−) = −
d2

dx2
− (ζ sinh 2x− iM)2 (4)

which can also be expressed together as

H(±) = −
d2

dx2
−

[

ζ

2
(e2x ± e−2x)− iM

]2

. (5)

Now, under a change of variable x = 1
2
log z, H(±) become

H(±) = − 4z2
d2

dz2
− 4z

d

dz
−

[

ζ

2

(

z ±
1

z

)

− iM

]2

. (6)

As such if we set

µ(±)(z) = z(1−M)/2 ei
ζ

4
(z± 1

z
) (7)

the Hamiltonians (6) can be mapped to their gauge-transformed forms

H(±)
g =

[

µ(±)(z)
]−1

H(±)
[

µ(±)(z)
]

. (8)

From the relations

µ−1 d

dz
µ =

d

dz
+
µ′

µ
(9)

µ−1 d2

dz2
µ =

d2

dz2
+ 2

µ′

µ

d

dz
+
µ′′

µ
(10)

where primes denote differentiations with respect to z, we easily obtain

H(±)
g = −4z2

d2

dz2
− 4z

(

2
µ′

µ
z + 1

)

d

dz
− 4z2

µ′′

µ
− 4z

µ′

µ

−

[

ζ

2
(z ±

1

z
)− iM

]2

.

(11)

Taking now into account the expressions

µ′

µ
=

1−M

2z
+ i

ζ

4

(

1∓
1

z2

)

(12)

µ′′

µ
=

(

µ′

µ

)2

−
1−M

2z2
± i

ζ

2

1

z3
(13)
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we arrive at the following representations of H(±)
g :

H(±)
g = −4z2

d2

dz2
−
[

2iζz2 − 4(M − 2)z ∓ 2iζ
] d

dz
+ 2iζ(M − 1)z + 2M − 1∓ ζ2 . (14)

We thus find that the Schrödinger equation

H(±) ψ(±)(x) = E(±) ψ(±)(x) (15)

is equivalent to

H(±)
g φ(±)(z) = E(±) φ(±)(z) (16)

where ψ(±)(x) = µ(±)(z) φ(±)(z).

It should be noted here that in terms of the sℓ(2, R) generators [16]

J+ = z2
d

dz
− 2jz, J0 = z

d

dz
− j, J− =

d

dz
(17)

the gauged Hamiltonians H(±)
g can be rewritten as

H(±)
g = − 4J2

0 − 2iζJ+ ± 2iζJ− +M2 ∓ ζ2 (18)

(provided j = M−1
2

) in the true spirit of quasi-solvability[16].

We now turn to some specific cases of φ(±)(z) by focussing on the following choices :

(i) φ(±)(z) = c
(±)
0

(ii) φ(±)(z) = c
(±)
0 + c

(±)
1 z

(

c
(±)
1 6= 0

)

(iii) φ(±)(z) = c
(±)
0 + c

(±)
1 z + c

(±)
2 z2

(

c
(±)
2 6= 0

)

(iv) φ(±)(z) = c
(±)
0 + c

(±)
1 z + c

(±)
2 z2 + c

(±)
3 z3

(

c
(±)
3 6= 0

)

where c
(±)
i (i = 0, 1, 2, 3) are constants. It is obvious that we can generalize φ(±)(z) to

higher degrees of z apart from the ones chosen here.

First consider φ(±)(z) = c
(±)
0 . For this case, Eq.(16) becomes

2iζ(M − 1)z + 2M − 1∓ ζ2 − E(±) = 0 (19)

leading to

2ζ(M − 1) = 0 (20)

4



2M − 1∓ ζ2 − E(±) = 0 . (21)

Hence M = 1 (j = 0) and as a result

E(±) = 1∓ ζ2 . (22)

The accompanying wave functions read

ψ(+) ∝ e
iζ

2
cosh 2x (23)

ψ(−) ∝ e
iζ

2
sinh 2x . (24)

We therefore see that for M = 1 the energy eigenvalues corresponding to (1) as well as

its modified PT-symmetric version (2) are real.

Next consider φ(±)(z) = c
(±)
0 + c

(±)
1 z. Eq.(16) gives

2iζ(M − 2) c
(±)
1 = 0 (25)

2iζ(M − 1) c
(±)
0 +

(

6M − 9∓ ζ2 −E(±)
)

c
(±)
1 = 0 (26)

±2iζ c
(±)
1 +

(

2M − 1∓ ζ2 − E(±)
)

c
(±)
0 = 0 . (27)

Eq.(25) implies M = 2 while Eqs.(26) and (27) give

2iζ c
(±)
0 − ǫ(±) c

(±)
1 = 0 (28)

−ǫ(±) c
(±)
0 ± 2iζ c

(±)
1 = 0 (29)

where ǫ(±) = E(±) − 3± ζ2.

Solving (28) and (29) we get ǫ
(+)
± = ±2iζ (complex) and ǫ

(−)
± = ±2ζ (real). We thus

find for M = 2 (j =
1

2
) the results

E
(+)
± = 3± 2iζ − ζ2 (30)

ψ
(+)
± ∝ e

iζ

2
cosh 2x (e−x ± ex) (31)

for the KM potential and

E
(−)
± = 3± 2ζ + ζ2 (32)
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ψ
(−)
± ∝ e

iζ

2
sinh 2x (e−x ± iex) (33)

for the potential (2). Expectedly the eigenvalues for the KM case turn out to be a complex

conjugate pair, M = 2 being an even integer. However, those for the PT-symmetric

potential (2) emerge real as borne out by (32).

Proceeding now to the case φ(±)(z) = c
(±)
0 + c

(±)
1 z + c

(±)
2 z2, we find from Eq.(16)

2iζ(M − 3) c
(±)
2 = 0 (34)

2iζ(M − 2) c
(±)
1 +

(

10M − 25∓ ζ2 − E(±)
)

c
(±)
2 = 0 (35)

2iζ(M − 1) c
(±)
0 +

(

6M − 9∓ ζ2 −E(±)
)

c
(±)
1 ± 4iζc

(±)
2 = 0 (36)

±2iζ c
(±)
1 +

(

2M − 1∓ ζ2 − E(±)
)

c
(±)
0 = 0 . (37)

Here we have M = 3 and defining ǫ(±) = E(±) − 9± ζ2, we get

2iζc
(±)
1 −

(

ǫ(±) + 4
)

c
(±)
2 = 0 (38)

4iζc
(±)
0 − ǫ(±) c

(±)
1 ± 4iζc

(±)
2 = 0 (39)

−
(

ǫ(±) + 4
)

c
(±)
0 ± 2iζc

(±)
1 = 0 . (40)

Solving (38)-(40) we obtain for M = 3 (j = 1) the solutions

E
(+)
0 = 5− ζ2, E

(+)
± = 7− ζ2 ± 2

√

1− 4ζ2 (41)

ψ
(+)
0 ∝ e

iζ

2
cosh 2x sinh 2x (42)

ψ
(+)
± ∝ e

iζ

2
cosh 2x

[

2 cosh 2x−
i

ζ

(

1±
√

1− 4ζ2
)

]

(43)
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for the KM potential and

E
(−)
0 = 5 + ζ2, E

(−)
± = 7 + ζ2 ± 2

√

1 + 4ζ2 (44)

ψ
(−)
0 ∝ e

iζ

2
sinh 2x cosh 2x (45)

ψ
(−)
± ∝ e

iζ

2
sinh 2x

[

2 sinh 2x−
i

ζ

(

1±
√

1 + 4ζ2
)

]

(46)

for the potential (2). Contrary to the Khare-Mandal potential (1) for which two of the

eigenvalues (namely E
(+)
± ) become complex if |ζ | is larger than the critical value ζc =

1
2
,

all three eigenvalues of the PT-symmetric potential (2) remain real for all values of ζ .

We now take up the case (iv) namely φ(±)(z) = c
(±)
0 + c

(±)
1 z + c

(±)
2 z2 + c

(±)
3 z3 for which

we obtain from Eq.(16) the relations

2iζ(M − 4) c
(±)
3 = 0 (47)

2iζ(M − 3) c
(±)
2 +

(

14M − 49∓ ζ2 − E(±)
)

c
(±)
3 = 0 (48)

2iζ(M − 2) c
(±)
1 +

(

10M − 25∓ ζ2 −E(±)
)

c
(±)
2 ± 6iζc

(±)
3 = 0 (49)

2iζ(M − 1) c
(±)
0 +

(

6M − 9∓ ζ2 −E(±)
)

c
(±)
1 ± 4iζc

(±)
2 = 0 (50)

±2iζ c
(±)
1 +

(

2M − 1∓ ζ2 − E(±)
)

c
(±)
0 = 0 . (51)

We are thus led to M = 4 and defining ǫ(±) = E(±) − 15± ζ2, we get

2iζc
(±)
2 −

(

ǫ(±) + 8
)

c
(±)
3 = 0 (52)

4iζc
(±)
1 − ǫ(±) c

(±)
2 ± 6iζc

(±)
3 = 0 (53)

6iζc
(±)
0 − ǫ(±) c

(±)
1 ± 4iζc

(±)
2 = 0 (54)
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−
(

ǫ(±) + 8
)

c
(±)
0 ± 2iζc

(±)
1 = 0 . (55)

An analysis of Eqs.(52)-(55) reveals that for consistency of the equations ǫ(±) have to

fulfil the condition

(

ǫ(±) + 8
) [(

ǫ(±) + 8
) (

ǫ(±)2 ± 16ζ2
)

± 24ζ2ǫ(±)
]

+ 144ζ4 = 0 . (56)

This fourth-degree equation can be factorized into two quadratic ones namely

(

ǫ(+) + 8
) (

ǫ(+) ± 4iζ
)

+ 12ζ2 = 0 (57)

(

ǫ(−) + 8
) (

ǫ(−) ± 4ζ
)

− 12ζ2 = 0 . (58)

Let us now consider the solutions of (57) and (58). It is obvious that in the former

case, all the four solutions are complex. This corresponds to the KM scenario. However,

in the latter case (which corresponds to the PT-symmetric model (2)), we get quadratic

equations in ǫ(−) with real coefficients :

ǫ(−)2 + 4(2± ζ) ǫ(−) + 4ζ(±8− 3ζ) = 0 . (59)

For the upper signs we obtain two real solutions for any ζ :

ǫ
(−)
+,± = − 2(2 + ζ)± 4

√

1− ζ + ζ2 (60)

and the same is true for the lower signs :

ǫ
(−)
−,± = − 2(2− ζ)± 4

√

1 + ζ + ζ2 . (61)

Note that we can combine the four real solutions given by (60) and (61) in the manner

ǫ(−)
σ,τ = − 2(2 + σζ) + 4τ

√

1− σζ + ζ2 (62)

where σ, τ = +, −.

Thus corresponding to the PT-symmetric potential (2) our findings for M = 4 (j = 3
2
)

are

E(−)
σ,τ = 11− 2σζ + ζ2 + 4τ

√

1− σζ + ζ2 (63)
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ψ(−)
σ,τ ∝ e

iζ

2
sinh 2x (e−x − σiex)

[

sinh 2x−
i

ζ

(

1 + τ
√

1− σζ + ζ2
)

]

. (64)

To summarize, we observe from the foregoing treatment of the cases M = 1, 2, 3, 4 that

unlike the case of KM potential in which QES eigenvalues occur in complex conjugate

pairs for M an even integer but may be real for M an odd integer and |ζ | smaller than

or equal to some critical value ζc, our PT-symmetric potential (2) exhibits real energy

eigenvalues both for even and odd integer values of M and any value of ζ . It should be

remarked that although we restricted our discussion upto M = 4 which corresponds to

keeping a fouth-degree wave function, it is clear that we can deal with, in an identical

way, higher degree contributions in φ(±)(z). We conjecture that all of them will lead to

real eigenvalues.

Finally, we can write down recurrence relations for polynomials by substituting

φ(±)(z) =
∞
∑

n=0

R(±)
n (E(±))

n!
tn, t = ±

z

2iζ
in the Schrödinger equation (16). It can be readily

seen that the coefficients R(±)
n (E(±)) satisfy the three-term recursion relation

R
(±)
n+1

(

E(±)
)

=
(

E(±) − b(±)
n

)

R(±)
n (E(±))− a(±)

n R
(±)
n−1(E

(±)) (65)

where

a(±)
n = ∓ 4n(M − n)ζ2 (66)

b(±)
n = 4n(M − 1− n) + 2M − 1∓ ζ2 . (67)

If M = k, a positive integer, then a
(±)
k = 0 and for n = k, Eq.(65) reduces to a two-term

recursion relation. As a consequence, R
(±)
k+1, and more generally R

(±)
k+n, is proportional to

R
(±)
k :

R
(±)
k+n = R

(±)
k R̄(±)

n (68)

where R̄(±)
n satisfies the three-term recursion relation

R̄
(±)
n+1

(

E(±)
)

=
(

E(±) − b
(±)
M+n

)

R̄(±)
n (E(±))− a

(±)
M+n R̄

(±)
n−1 (E(±)) . (69)

QES eigenvalues are obtained as solutions of the kth-degree equation R
(±)
k

(

E(±)
)

= 0.
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