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Abstract 8 

Floods are hydrological disasters that can alter the physical, socioeconomic, and environmental 9 

settings of a region. The objective of the present study is to develop an efficient and reliable 10 

methodology to prepare a flood risk map for Assam, the North-eastern region (NER) of India, 11 

by the integration of hazard and vulnerability components. Three indices, namely flood hazard 12 

index (FHI), flood vulnerability index (FVI), and flood risk index (FRI), are developed using 13 

multi-criteria decision analysis (MCDA) – Analytical hierarchy process (AHP) approach in 14 

GIS environment for the regional and administrative level of Assam. The selected hazard and 15 

vulnerability indicators define the topographical, geological, meteorological, drainage 16 

characteristics, land use land cover, and demographical features of Assam. The results show 17 

that more than 70% of the total area lies in the moderate to very high FHI class, 57.37% have 18 

moderate to high FVI, and more than 50% have moderate to very high FRI class.  19 

Keywords: Flood hazard, vulnerability, risk, GIS, analytical hierarchy process (AHP), 20 

multicriteria decision analysis (MCDA), Assam. 21 

1. Introduction 22 

Natural disasters are caused by geological, hydrological, and meteorological events resulting 23 

in immeasurable loss of lives and property and natural landscape damage. Flood is the most 24 
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frequent and expensive hydro-meteorological hazard due to its high intensity of damage 25 

(Tabarestani and Afzalimehr 2021). Over the past few decades, the frequency of flood and its 26 

extent of destruction have increased significantly due to uneven distribution of rainfall, rapid 27 

snow melting, overflow of rivers, deforestation, uncontrolled urbanization, and unplanned 28 

human settlement along the coastal areas and riverbanks (Armenakis et al. 2017). From 2000 29 

to 2019, floods contributed 44% of the total disaster worldwide, and Asia alone experiences 30 

41% of the total flood events of the world, affecting approximately 1.5 billion people (CRED 31 

2020). The intensity of flood varies temporally and spatially, and its occurrence and negative 32 

consequences cannot be prevented altogether (Dewan et al. 2006). As developing countries are 33 

more vulnerable to floods, there is an urgent need to assess and manage future flood events to 34 

minimize the adverse impact. Flood management at the regional or local scale begins with 35 

identifying vulnerable areas, detailed understanding of interaction and relationships among the 36 

social, economic, and environmental factors to provide the rescue and mitigation response in 37 

case of emergency. A comprehensive flood risk map is a critical tool for executing an effective 38 

flood management system (Chakrabortty et al. 2021).  39 

Many studies have been conducted on flood assessment at the regional, national, and global 40 

levels using different approaches and methodologies (Chen et al. 2015; Kumar 2016; 41 

Majumder et al. 2019; Sharma et al. 2019; Toosi et al. 2019). The studies have inherent 42 

challenges and limitations in identifying and quantifying hazard and vulnerability indicators, 43 

dealing with uncertainties, assigning a proper weightage of indicators, and validating the result 44 

(Sharma et al. 2018; Arora et al. 2021). The indicators involved in the risk assessment are 45 

complex and contain temporal and spatial uncertainties (Choubin et al. 2019). The main 46 

challenge is acquiring and collecting data of the selected indicators (Mishra and Sinha 2020). 47 

Over the past few decades, remote sensing has played a crucial role in monitoring floods, and 48 

it has also solved the challenges related to the availability of data (Sharma et al. 2018; Wang 49 
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and Xie 2018; Rong et al. 2020). In recent times, GIS has been widely used in vulnerability 50 

and risk assessment studies as a decision support system for its database and analytical ability 51 

(Lyu et al. 2018; Choubin et al. 2019; Danso et al. 2020).  52 

Armenakis et al. (2017) developed a flood risk map for the Don River watershed, Toronto, 53 

using high spatial resolution data and incorporated demographic indicators to enhance 54 

mitigation and preparedness planning. Dandapat and Panda (2017) delineated the flood risk 55 

zone of Paschim Medinipur in West Bengal, India, and developed a composite vulnerability 56 

index, comprising of i) Physical Vulnerability Index, ii) Social Vulnerability Index, and iii) 57 

Coping Capacity Index within the GIS framework and estimated that 24.25% of the total 58 

population of the study area is located in high to very high flood risk zones. Sharma et al. 59 

(2018), using multicriteria analysis (MCA) and geospatial technique, carried out a flood risk 60 

assessment for Kopili River Basin (KRB) in Assam, India, and estimated that a significant 61 

portion of the crop and village land falls under high and moderate flood risk zones respectively. 62 

Arora et al. (2019) applied Shannon’s entropy (SE) and frequency ratio (FR) models to build a 63 

flood susceptibility model for Middle Ganga Plain using the 2008 Landsat 5TM image. 64 

Khosravi et al. (2020) developed a national scale flood susceptibility map for Iran using a deep 65 

learning convolutional neural networks (CNN) algorithm and illustrate the importance of 66 

watershed management and prevention of uncontrolled urban expansion to control flood. 67 

Zhang et al. (2020) developed a GIS-based model for flood risk assessment at a large basin 68 

scale, such as the Yangtze River Basin, China, taking economic, social, and ecological 69 

indicators of flood risk. 70 

Several researchers have done GIS-based flood vulnerability studies using multiple approaches 71 

(Hazarika et al. 2018; Brito et al. 2019; Dekongmen et al. 2021). Rashetnia and Jahanbani 72 

(2021) developed a GIS- fuzzy rule-based flood vulnerability index for Moreland city, 73 

Melbourne, considering social, economic, and hydrological factors. Sadeghi-Pouya et al. 74 
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(2017) carried out a flood vulnerability assessment of the western coastal cities of Mazandaran 75 

Province, Iran, by classifying effective criteria into three indices, i.e., socio-economic, 76 

population-environmental, and technical. Sarkar and Mondal (2020) performed a GIS-based 77 

flood vulnerability classification of the Kulik river basin using the frequency ratio (FR) model. 78 

 Detailed flood risk assessment has been carried out by incorporating hazard and vulnerability 79 

assessment and hydrological models (Vojtek and Vojteková 2019; Sharma et al. 2018; Pathak 80 

et al. 2020). The essential factor in flood risk assessment is the proper weightage assignment 81 

to the selected indicators. Many studies have applied Multi-Criteria Decision Analysis 82 

(MCDA) to identify, integrate, or rate the flood risk assessment factors (Chen et al. 2015; 83 

Arabameri et al. 2019; Toosi et al. 2019; Mishra and Sinha 2020). Chakraborty and 84 

Mukhopadhyay (2019) integrated AHP and GIS for the development of flood risk map for 85 

Coochbehar district, West Bengal, India, by the quantification of flood risk index (FRI) using 86 

flood hazard index (FHI) and flood vulnerability index (FVI). Hazarika et al. (2018) explained 87 

that the application of multicriteria analysis in the GIS environment provides flexibility in 88 

selecting significant indicators for the flood risk assessment for Dhemaji district in the Upper 89 

Brahmaputra River valley Assam, India.  90 

India is considered the second most flood-affected country globally, following China, and it 91 

experiences about 17 flood events per year on average, affecting approximately 345 million 92 

people (CRED 2020). The vast river network system and the world’s most prominent monsoon 93 

system make about 5.74 million hectares of the total land area inundated by floods 94 

(Subrahmanyam 1988; Dhar and Nandargi 2004). The issue of flood risk is quite prominent in 95 

the Assam region of India due to the highly braided Brahmaputra River. It is mainly influenced 96 

by the southwest tropical monsoon, making the river experiencing high water levels and strong 97 

flows in the pre-monsoon season. Apart from topographic and meteorological factors, other 98 

factors like population settlement along the flood plains, erosion, and siltation of the banks 99 
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accelerate the flood problem in the Brahmaputra basin. Every year the region suffers enormous 100 

losses and damage in terms of property and lives, so there is an urgent need to conduct a 101 

comprehensive food risk assessment and identify vulnerable areas and triggering factors.  102 

The flood-related study for the Assam region is limited only to one aspect like hazard, 103 

vulnerability, or risk focussing only on a small area, river basin, or district level with a limited 104 

number of indicators (Borah et al. 2018; Hazarika et al. 2018; Sharma et al. 2018; Majumder 105 

et al. 2019; Pathan and Sil 2020; Sarmah et al. 2020; Pareta 2021). Considering hazard and 106 

vulnerability aspects, comprehensive flood risk assessment studies for the entire Assam region 107 

are limited. In the present study, a GIS-based comprehensive flood risk assessment of the 108 

Assam region at a regional scale and administrative level is conducted by integrating spatial, 109 

hydrological, and socio-economic indicators. The weightage of each indicator is determined 110 

by the application of the MCDA technique. The final hazard and risk maps are validated by 111 

confusion matrix or error matrix, indirect methods of relative mean error (RME), and root of 112 

mean-square error (RMSE) based on historical flood events. The study framework provides an 113 

opportunity to understand the challenges associated with flood risk management and to 114 

implement effective and sustainable flood mitigation measures and policies for urban and rural 115 

areas located at flood risk zones. 116 

The main objectives of the present study are as follows i) to develop a GIS-based flood hazard, 117 

vulnerability, and risk index by the selection of suitable hazard and vulnerability indicators, 118 

weighted according to their significance, ii) to produce high-resolution flood risk, hazard, and 119 

vulnerability maps by integrating MCDA and GIS to identify flood-prone areas, iii) to analyze 120 

the flood risk scenario at the administrative level. 121 

2. Study area 122 

Assam lies in the north-eastern region (NER) of India, covering an area of approximately 123 

78,438 km2, extending from 24° 8′ N to 28° 2′ N latitude and 89° 42′ E to 96° E longitude. The 124 
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elevation of the Assam region ranges from 5-1964 m. The neighbouring states of Assam are 125 

West Bengal, Arunachal Pradesh, Nagaland, Manipur, Mizoram, Tripura, and Meghalaya. 126 

Assam shares its boundary with neighboring countries, Bhutan in the north and Bangladesh in 127 

the south (Figure 1). The Guwahati city of Assam, the largest metropolis in NER, is known as 128 

the “Gateway to Northeast India” and connects the entire NER with the rest of India. The 129 

geographical feature of Assam contains three major physiographic divisions of India i) the 130 

northern Himalayas as Eastern hills, ii) Northern plains as Brahmaputra plain, and iii) Deccan 131 

plateau as Karbi Anglong (Dikshit and Dikshit 2014). 132 

The state of Assam can be divided into five administrative levels as (i) Upper Assam, (ii) Lower 133 

Assam, (iii) Central Assam, (iv) North Assam, and (v) Barak Valley (Figure 1). According to 134 

the 2011 census, the population growth rate is 16.93%, and districts like Sonitpur, Cachar, 135 

Dhubri, Barpeta, Kamprup, Darrang, and Nagaon have high population density (Census 2011). 136 

The highest contribution to the economy of Assam is agricultural activities, and the majority 137 

of the population is rural involved in the agricultural sector (Figure 1). The climate of Assam 138 

is a tropical monsoon rainforest climate with heavy rainfall and high humidity. The summers 139 

are warm (temperature 32°-38°) and mild winters (temperature 8°-20°). The region experiences 140 

heavy annual rain ranging from 1500 to 3750 mm both in the plain and mountain areas due to 141 

the southwest monsoon, mainly in May to September, which causes floods (Chaliha et al. 142 

2012).  143 

Figure 1 144 

Two river systems, Brahmaputra and Barak, are present in the Assam region. In Assam, the 145 

Brahmaputra valley is bounded by Himalayan mountains, Patkai hill ranges, and plains of 146 

Bangladesh in the northern, eastern, and southern parts, respectively (Deka et al. 2012). Due to 147 

the high flood frequency of the Brahmaputra river, it is known as “the river of sorrow” in 148 

Assam (Dhar and Nandargi 2004). The tributaries of Brahmaputra River are rainfed in nature 149 



 

7 

 

and classified as north bank tributaries namely Subansiri, Ronganadi, Dikrong, Buroi, 150 

Borgong, Jiabharali, Dhansiri (North) Puthimari, Manas, Beki, Aie, Sonkosh and south bank 151 

tributaries namely Noadehing, Buridehing, Desang, Dikhow, Bhogdoi, Dhansiri (South), 152 

Kopilli, Kulsi, Krishnai, Dhudhnoi, Jinjiran (Jain et al. 2007).  153 

The Barak River system is present in the southern part of Assam, forming Barak valley, and it 154 

finally drains into Bangladesh (Deka et al. 2012). The main tributaries of Barak rivers are 155 

Katakhal, Jiri, Chiri, Modhura, Longai, Sonai, Rukni, and Singla, mainly rainfed tributaries 156 

and are highly vulnerable to flooding during rainfall periods (Jain et al. 2007).   157 

Assam experiences flood every year, causing inundation of villages, damages to croplands, loss 158 

of livelihood, lakhs of families becoming homeless and affecting the entire NER due to 159 

connectivity disruption (Sharma et al. 2018). According to Rashtriya Barh Ayog (RBA), the 160 

total flood-prone area of Assam is 31.05 Lakh Hectares which constitute about 40 % of the 161 

total area of Assam and 9.40% of the total flood-prone area of India. Hence, flood risk mapping 162 

is essential for Assam to facilitate effective flood management practice and planning.  163 

3. Methodology 164 

The methodology can be divided into the following sections: (1) preparation of spatial 165 

geodatabase for flood hazard and vulnerability indicator, (2) application of MCDA-AHP for 166 

weightage assignment of the indicators, (3) quantification of flood hazard index (FHI), flood 167 

vulnerability index (FVI), and flood risk index (FRI) at the regional and administrative level 168 

and (4) validation of flood hazard and risk models. 169 

3.1. Flood hazard indicators 170 

Flood hazard indicators are selected based on literature review, and corresponding thematic 171 

layers are generated using GIS.  172 

3.1.1. Elevation and slope 173 
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The criteria of elevation and surface slope can delineate the regions having different levels of 174 

flood hazard. The downstream areas at lower elevation and flat slopes are more prone to 175 

flooding than those with high elevation and steep slopes. The elevation and slope layers are 176 

created from SRTM 1 arc-second (30m resolution) DEM. The void data was filled, mosaiced, 177 

and extracted by mask with the help of spatial analyst tool, and the attributes were calculated 178 

using a zonal statistics tool (Souissi et al. 2020).  179 

3.1.2. Drainage density 180 

Drainage density can be defined as the length of river channels per unit area of the basin, and 181 

it represents flow accumulation pathways (Arora et al. 2019). The drainage network map of the 182 

study area is generated from DEM data using the hydrology tools, and drainage density is 183 

calculated by the line density tool in GIS (Vignesh et al. 2021).  184 

3.1.3. Distance to river 185 

Proximity to the river channels plays a critical role in flood hazard modeling. During the river's 186 

overflow, the river's volume will exceed its drainage capacity, and the water depth in the areas 187 

located near the riverbed will increase significantly. The flood inundation will not impact only 188 

the nearest river location, but the waterlogging and risk of flood will expand to the surroundings 189 

(Chakraborty and Mukhopadhyay 2019). A raster layer is created using the Euclidean distance 190 

tool in GIS (Toosi et al. 2019). 191 

3.1.4. Distance to embankment breach locations 192 

Embankments are man-made structures used as flood mitigation measures to protect the 193 

settlements around the riverbanks. Breaching of the embankment can cause potential flood 194 

damage (Hazarika et al. 2018). The locations of embankment breaches are identified by the 195 

historical flood records, literature review, and Assam State Disaster Management Authority 196 
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(ASDMA) reports. The coordinates of the locations are extracted from Google Earth and using 197 

the Euclidean distance tool, a raster layer is prepared (Chakraborty and Mukhopadhyay 2019). 198 

3.1.5. Soil texture 199 

Soil texture is a significant flood hazard indicator as the regional internal drainage system, 200 

surface runoff, and moisture contents are highly influenced by the prevailing soil texture (Arora 201 

et al. 2018). The soil data is obtained from the Food and Agriculture Organization of the United 202 

Nations Educational, Scientific and Cultural Organization (FAO-UNESCO) and classified into 203 

five soil classes (a) sandy clay loam, (b) loam, (c) clay loam, (d) clay, and (e) sandy loam 204 

(Pareta 2021). 205 

3.1.6. Geology 206 

Geology controls the hydraulic properties of the bedrock of a region. The bedrock with 207 

fractured, high porosity and permeability enhances the infiltration rate of rainwater, thus 208 

minimizing the risk of flood. The geology map is extracted from the National Geologic Map 209 

Database (NGMDB), USGS, and classified into four classes as (a) sedimentary, (b) 210 

metamorphic, (c) Precambrian, and (d) Paleozoic rocks (Bhandari et al. 1973). 211 

3.1.7. Geomorphology  212 

Floods give rise to different landforms like erosional and depositional landforms. The 213 

geomorphological data is obtained from the Bhukosh-Geological Survey of India (GSI) 214 

(https://bhukosh.gsi.gov.in/Bhukosh/MapViewer.aspx), and classified into (a) structural hills, 215 

(b) denudational hills, (c)  alluvial plains, (d) pediplain, and (e) floodplain (Vignesh et al. 2021). 216 

3.1.8. Topographic Wetness Index (TWI) 217 

TWI is used to assess the effect of topography on the hydrological process of a watershed and 218 

allows delineation of flood inundated areas (Pourali et al. 2016). For TWI, slope and flow 219 
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accumulation layers are generated from DEM data. TWI is calculated by the equation (1) given 220 

by Beven and Kirkby (1979) 221 

                                                                                                                    (1) 222 

where A represents source contributing area and tan β is ground surface slope. Higher TWI 223 

indicates the area is more prone to flood, and lower value denotes the steepest slope and less 224 

flood-prone regions (Arora et al. 2019).  225 

Figure 2 226 

3.1.9. Rainfall Erosivity Factor (REF) 227 

Soil erosion is a significant problem during floods, and its rate depends on rainfall intensity. 228 

With the help of REF, the impact of rainfall intensity on soil erosion can be quantified. REF is 229 

calculated by equation (2) developed by Singh et al. (1981) using the average daily rainfall data 230 

of 21 years from 2000 to 2020 (Pathan and Sil 2020). 231 

                                                                                                                   (2) 232 

Here, R and P represent rainfall erosivity factors (MJ mm ha-1 hr-1 year-1) and mean annual 233 

precipitation (mm), respectively. 234 

3.1.10. Rainfall intensity 235 

Rainfall intensity is a crucial parameter that induces the occurrence of floods. Rainfall data 236 

from 2000 to 2020 are collected from Indian Meteorological Department (IMD), and rainfall 237 

intensity is determined for 114 grid points using equation (3). Rainfall intensity map is 238 

developed using Modified Fournier Index (MFI) approach and interpolated by Inverse Distance 239 

Weighting (IDW) interpolation in GIS (Toosi et al. 2019). 240 

ln
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																																																																										                                                        (3) 241 

Pi and P are the mean monthly and annual precipitation (mm), respectively. 242 

3.1.11. Runoff coefficient 243 

In the present study, rainfall-runoff modeling is performed using the National Resources 244 

Conservation Services-Curve Number (NRCS-CN) method to estimate the surface runoff 245 

coefficient for 33 basins in the study area (Pathak et al. 2020). The required input datasets are 246 

DEM, soil data, land use land cover (LULC), and rainfall data of the study area (Toosi et al. 247 

2019).  248 

The runoff coefficient (RC) is calculated by the rational method using equation (4) 249 

                                                                                                                                                            (4)                             250 

The surface runoff of an area is given by equations (5) to (10) 251 

                                                           𝑃 = 𝐼 + 𝐹 + 𝑄                                                              (5) 252 

P, F, and Q signify precipitation, initial abstraction, actual retention, and direct runoff, 253 

respectively. 254 

The ratio of actual rainfall retention to the potential maximum retention S is equal to the ratio 255 

of direct runoff to rainfall minus initial abstraction. 256 

                                                  (6) 257 

  																																																																				 																																																																	(7) 258 

                                                                   	 	                                                              259 
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                                                                       For P>λS                               (9) 261 

                                                                   Q = 0                      For P≤ λS                             (10) 262 

λ is initial abstraction coefficient (ranging from 0 to infinity); in general, λ = 0.2 is 263 

recommended. 264 

The value of S for the derived curve number (CN) of the basin can be calculated by equation 265 

(11). 266 

                                                                                                                                            (11) 267 

CN is a dimensionless parameter ranging between 0 to 100 (USAD 2004; Al-Ghobari et al. 268 

2020). 269 

CNi values are determined for each sub-basin, with different land uses, soil types, and areas 270 

(Ai). The final composite curve number (CNw) is estimated by weighting the resulting CN 271 

values in equation (12). 272 

                                                                                                                     (12) 273 

3.2. Flood Vulnerability indicators 274 

Datasets for flood vulnerability indicators were collected from different global, national, 275 

regional platforms and processed in the GIS environment for further analysis. 276 

3.2.1. Population density 277 

Population density data are obtained from the Census 2011 (Census 2011). It directly relates to 278 

vulnerability because more people will be exposed to hazardous events in an area with a high 279 

population density (Chakraborty and Mukhopadhyay 2019).  280 

3.2.2. Vulnerable population 281 

The vulnerable population of the study area comprises females, children, and the old-aged 282 

population due to their low resilient capacity and high dependency. From the Census 2011, the 283 
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data are extracted to estimate the spatial distribution of the vulnerable population (Sharma et 284 

al. 2018). 285 

3.2.3. Employment rate 286 

The economic status of the population highly influences the coping capacity of an area. A well-287 

defined income source of a community improves the living standard and increases the 288 

community's coping capacity. The employment status for the Assam region is acquired from 289 

Census 2011 (Agrawal et al. 2021). 290 

3.2.4. Literacy rate 291 

The literacy rate of an area is directly related to a community's awareness about the hazard and 292 

helps in the preparedness during the hazardous event. Here, the literacy rate of Assam is 293 

obtained from Census 2011, and its thematic layer is generated (Sharma et al. 2018). 294 

3.2.5. Household with more than four family members 295 

The household size directly influences the vulnerability component. A smaller household will 296 

be less vulnerable than a household with more family members. The data of households are 297 

collected from Census 2011 (Agrawal et al. 2021). 298 

3.2.6. Dilapidated house 299 

The condition of building structures determines their coping capacity towards any disaster. If 300 

the building, mainly a residential building, is dilapidated, its vulnerability will increase. From 301 

the Census 2011, data regarding the dilapidated houses are obtained (Agrawal et al. 2021). 302 

Figure 3 303 

3.2.7. Building density  304 

Building density is considered an essential indicator for infrastructure vulnerability assessment, 305 

and it is positively correlated with the vulnerability index. For the present study, building 306 

density is calculated using the data obtained from the Census 2011 (Agrawal et al. 2021). 307 

3.2.8. Distance to roads 308 
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A well-connected and maintained transportation system is one of the essential infrastructure 309 

components of a region. Road connectivity plays a critical role in relief and rescue operations 310 

during an emergency. Those settlements nearer to the roads are less vulnerable as they can be 311 

evacuated or rescued faster than the population residing in the remote areas (Hazarika et al. 312 

2018). With the help of OpenStreetMap, major and minor roads are extracted and digitized in 313 

GIS. A raster dataset is generated by the Euclidean distance tool in GIS (Pareta 2021). 314 

3.2.9. Distance to hospital 315 

Proximity to hospitals and healthcare centers will facilitate emergency rescue operations and 316 

post-disaster health management activities. The locations of hospitals are obtained from the 317 

Department of Health & Family Welfare, Government of Assam. Coordinates of 624 318 

government hospitals are extracted from Google Earth, and distance from hospitals is 319 

calculated using the Euclidean distance tool in GIS (Chakraborty and Mukhopadhyay 2019; 320 

Toosi et al. 2019). 321 

3.2.10. Distance to stream confluence 322 

The areas near the stream confluence are more prone to flood inundation because during the 323 

flood at the confluence point, the channel tends to carry combined discharge and load of two 324 

or more upstream tributaries (Chakraborty and Mukhopadhyay 2019). From the drainage 325 

network layer of the study area, confluence points are identified, and the distance from the 326 

confluence point is determined using the Euclidean distance tool in GIS (Arora et al. 2019). 327 

3.2.11. Flow accumulation 328 

Flow accumulation is the flow concentration, and it is directly related to flood vulnerability 329 

(Vojtek and Vojteková 2019). It is lower upstream but higher downstream as many tributaries 330 

join the main channel downstream. For the present study, flow accumulation raster is prepared 331 

by 30m resolution of DEM data using hydrology tool in GIS. 332 
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3.2.12. Landuse land cover (LULC) 333 

LULC governs the relationship between different hydrological parameters like runoff, 334 

infiltration, and rainfall abstraction (Toosi et al. 2019). The urban and pasture land increase the 335 

overflow of water, whereas forest and dense natural vegetation increase water infiltration and 336 

abstractions. The land use land cover map with ten LULC classes for the study area is derived 337 

from Sentinel -2 imagery (10 m resolution) by ESRI (Kontgis et al. 2021). The map is further 338 

reclassified into five categories (a) water, (b) built-up area, (c) agricultural land, (d) natural 339 

vegetation, and (e) bare land and validated by calculating the kappa coefficient (Vignesh et al. 340 

2021). 341 

The accuracy of the LULC map is checked by overall accuracy (AOVERALL) and Kappa (K) 342 

statistics, User’s and Producer’s accuracy (AUSER and APRODUCER) using equations (13) to (16) 343 

(Gibril et al. 2017; Hishe et al. 2020). The detailed error matrix was computed for each 344 

classification image, as it allowed evaluation of AUSER and APRODUCER for each of the 345 

information classes included in our classification scheme (Table 1). For the present study, 346 

Google Earth was used for the validation of classification with N=373 points.  347 

                                                   𝐾 =                                                (13)                           348 

                                                                                                     (14) 349 
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Where r denotes the number of rows, mii number of observations in row i and column i, m+i 352 

and mi+ are the marginal total of row (r) and column (i), respectively, nii are the number of 353 

observations correctly classified. 354 

Table 1 355 

The value of overall accuracy and Kappa coefficient are 90.88% and 0.885, respectively. The 356 

Kappa coefficient value close to 1 signifies that the classified image and reference image shows 357 

perfect agreement, and hence the classification performed in the study is acceptable. 358 

All the thematic layers of flood hazard and vulnerability indicators are resampled to a 30 m 359 

raster layer to minimize the error (Chakraborty and Mukhopadhyay 2019). Jenks Natural 360 

Breaks method is applied to classify flood hazard and vulnerability indicators, except for 361 

distance from rivers, roads, stream confluence, hospitals, embankment breach location, LULC, 362 

geology, geomorphology, and soil type (Toosi et al. 2019). 363 

3.3. Analytical Hierarchy Process (AHP) as Multi-Criteria Decision Analysis (MCDA) 364 

technique 365 

The weightage to flood hazard and vulnerability indicators are assigned using Analytical 366 

Hierarchy Process (AHP) as Multi-Criteria Decision Analysis (MCDA) technique. It is 367 

considered a systematic, multi-objective, and reliable approach developed by Saaty (Saaty 368 

2000, 2008). AHP decomposes a problem into a simple and subjective evaluated sub-problem 369 

hierarchy (Saaty 2000). The indicators are weighted according to relative importance on a scale 370 

from 1 to 9 (Saaty 2008). The steps of AHP are as follows: 371 

Step 1. Decompose the complex unstructured problem into a hierarchy of goals, criteria, and 372 

indicators.  373 

Step 2. Make a pairwise comparison of the indicators based on a qualitative scale (Table 2).  374 



 

17 

 

Step 3. Construct a square matrix of n x n where diagonal elements of the matrix are 1. If the 375 

indicator in the ith row of the matrix is more important than the indicator in the jth column, then 376 

the element (i, j) will be assigned a value greater than 1, and the element (j, i) will be its 377 

reciprocal. 378 

                                                            Table 2 379 

                                                            Table 3 380 

Step 4. The weights of the pairwise comparison matrix are normalized by the eigenvector 381 

method using the equations (17) to (18). 382 

                                                                                                                          (17) 383 

                                                                                                                           (18)  384 

where Cij is the indicator value in the pairwise comparison matrix, Xij is the normalized score, 385 

and Vij is the priority vector representing the indicators' weight (Wind). 386 

Finally, the assigned normalized weights are tested for consistency ratio (CR) using equation 387 

(19), where CR must be less than 0.1 and consistency index (CI) is calculated by equation (20). 388 

                                                                                                                                (19) 389 

                                                                                                                      (20) 390 

λmax, RI (Table 3), and n are principal eigenvector, random index, and the number of indicators, 391 

respectively. 392 

3.4. Flood hazard, vulnerability, and risk index  393 

Flood hazard index (FHI), flood vulnerability index (FVI), and flood risk index (FRI) are 394 

calculated in GIS using a raster calculator by equations (21) to (23). The index scores are 395 
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normalized and converted into a raster of grid size 30 m × 30 m to minimize error (Chakraborty 396 

and Mukhopadhyay 2019).  397 

                (21) 398 

399 

(22) 400 

     Here, Windicator is the weight of respective indicators. 401 

                                                                                                                (23)  402 

All the indices are classified into five classes: very low, low, moderate, high, and very high. 403 

3.5. Flood hazard map validation 404 

To validate the hazard map 478 historical flood location points are selected and used for the 405 

performance analysis based on the accuracy assessment of flood classification. The confusion 406 

matrix or error matrix is suitable to validate the accuracy (Arora et al. 2019; Cabrera and Lee 407 

2019). Several parameters like overall accuracy (OA), true positive rate (PRTRUE), false positive 408 

rate (PRFALSE), true negative rate (NRTRUE), and false-negative rate (NRFALSE) are calculated 409 

using the equations (24) to (28): 410 

                           𝑂𝐴 = =                             (24) 411 

                                                                                                            (25) 412 

                                                                                                           (26) 413 

                                                            = = 																				(27) 414 
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                                                           = =                     (28) 415 

where P, N, PTRUE, NTRUE, PFALSE, and NFALSE denote positive, negative, true positive, true 416 

negative, false positive, and false negative, respectively.  417 

For the 478 points, elevations are extracted by using GIS tools. The elevation for the points 418 

ranged between 5 m to 135 m. The points are interpolated by the Kriging interpolation method 419 

and identified that points belonging to this elevation range are flood-prone areas.  420 

3.6. Flood risk map validation 421 

Due to a lack of data on flood depths, storm discharge at micro levels, the validation of the 422 

result was based on historical flood events and flood-prone areas reported by Disaster 423 

Management authorities at state and district levels. A total of 1263 inundation-prone 424 

settlements in the study area are identified and converted as georectified points in the GIS 425 

environment. From the settlement layer, a set of points are generated for very low to very high 426 

flood risk with the help of a spatial statistics tool. To validate the flood risk model (FRM), 427 

indirect methods of relative mean error (RME) and root of mean-square error (RMSE) are 428 

applied by considering observed locations (OL) for reported sites and predicted locations (PL) 429 

for modeled sites (Chakraborty and Mukhopadhyay 2019). The values of RME, RMSE, 430 

percentage of relative error (REi), and standard error (SEi) for FRM are calculated using 431 

equations (29) to (32). 432 

                                                                                                                   (29) 433 

																																																															 =                                                (30)                            434 

																																																														                                                      (31) 435 
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                                                                                                                   (32) 436 

4. Results and discussion 437 

4.1. Spatial distribution of Flood hazard and vulnerability indicators 438 

The extent of flood hazard and vulnerability depends on topographical, geological, drainage 439 

characteristics, hydrological, meteorological, demographical conditions of the region (Toosi et 440 

al. 2019; Pathak et al. 2020; Hazarika et al. 2018; Arora et al. 2019). The flood hazard and 441 

vulnerability indicators are classified into different classes, and effective weights are assigned 442 

according to their significance i.e., very low (1), low (2), moderate (3), high (4), and very high 443 

(5) (Table 4 and 5) (Chakraborty and Mukhopadhyay 2019; Pathak et al. 2020).  444 

A thematic layer of flood hazard indicators is generated in GIS (Figure 2(a)-2(l)). Lower, 445 

North, Upper, and Barak valley of Assam are more flood-prone due to lower elevation, milder 446 

slopes, lower TWI, sedimentary rock structure, and sandy clay loam soil texture. The drainage 447 

density is relatively low in Northern Assam and high in the Lower, Upper, Central, and Barak 448 

valleys of Assam, increasing its flood susceptibility (Vignesh et al. 2021). The Lower, Northern 449 

and Upper Assam are highly susceptible to flood due to alluvial and flood plains. The REF 450 

values in the Upper and Lower Assam ranges from very low to very high, very high to moderate 451 

in the Barak valley, very low to low in Central, and moderate to very low in Northern Assam. 452 

The rainfall intensity and runoff coefficient are moderate to very high for the Lower and Barak 453 

valley of Assam.  454 

                                                               Table 4 455 

The vulnerability indicators can be grouped into four types of vulnerability (i) socioeconomic 456 

(population density, vulnerable population, employment rate, literacy rate, and household with 457 

more than 4 family members), (ii) infrastructure (building density, distance to roads, distance 458 

to hospital, and several dilapidated houses), (iii) hydrological (flow accumulation and distance 459 

2( )
i

SE OL PL= -
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to stream confluences) and (iv) land use (LULC) (Figure 3(a)-3(l)) (Sharma et al. 2018). The 460 

population density ranges from very high to moderate for the Lower, Upper, and Barak valley 461 

of Assam and low to very low in Central and Northern Assam. 462 

                                                                  Table 5 463 

The vulnerable population is very high in some parts of the Lower, Central, Upper, and Barak 464 

valley of Assam. The employment rate is very high in the upper region of Assam due to the 465 

predominance of agricultural activities, and the majority of the population is self-employed. 466 

Very high to moderate literacy rates are found in the Upper, Central, and Barak valley of Assam 467 

and can be considered less vulnerable than those with low literacy rates. The housing condition 468 

of Central and Upper Assam lies in very low to low vulnerable class along with moderate to 469 

high building density. The LULC distribution is classified according to the flood hazard, 470 

vulnerability, and risk index for the Assam region (Figure 4(a)-4(d)) (Toosi et al. 2019). The 471 

indicators are dynamic and vary spatially and temporally (Souissi et al. 2020). 472 

Figure 4 473 

4.2. Weightage assignment of indicators by AHP 474 

In the present study AHP, a multi-criteria decision analysis approach is used to generate flood 475 

hazard index (FHI) and flood vulnerability index (FVI). The consistency ratio (CR) is 0.06 and 476 

0.03 for flood hazard and vulnerability indicators, respectively, and the consistency index (CI) 477 

is 0.09 for flood hazard and 0.04 for vulnerability indicators. Highly contributing factors for 478 

flood hazard are rainfall intensity, slope, runoff coefficient, elevation, distance to rivers, 479 

drainage density, and the least significant factors are erosivity factor, geomorphology, and 480 

geology (Table 6) (Toosi et al. 2019). 481 

                                                               Table 6 482 
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For flood vulnerability, highly contributing factors include population density, vulnerable 483 

population, land use landcover, whereas the least contributing factors are identified as 484 

employment and literacy rate (Table 7) (Chakraborty and Mukhopadhyay 2019). The 485 

weightage assigned to the indicators has a critical role in flood risk modeling (Arabameri et al. 486 

2019; Chakrabortty et al. 2021).  487 

                                                       Table 7 488 

4.3. Mapping of FHI, FVI, and FRI 489 

From the spatial distribution of the FHI, the influence of rainfall intensity, runoff coefficient, 490 

elevation, surface slope, distance to the river, and drainage density are highly significant (Toosi 491 

et al. 2019). The resulting flood hazard map shows a substantial relationship with the 492 

controlling factors and FHI values. Areas with alluvial plains fall under very high to moderate 493 

FHI, while regions with structural and denudational hills have very low to low flood hazard 494 

zonation (Vignesh et al. 2021). Upper and lower Assam have high TWI, and it comes under 495 

very high to high flood hazard zone. The Lower, Upper, and Barak valleys of Assam have very 496 

high FHI and low to very low  FHI values observed for the Central Assam (Figure 5a). More 497 

than 70% of the total area lies in the moderate to very high FHI class (Figure 5d). 498 

In the present study, significant weightage is given to demographic, land use landcover 499 

infrastructure, and hydrological indicators as vulnerability indicators. The FVI ranges from low 500 

to very low for Central and Upper Assam, high to very high for Lower Assam, moderate to low 501 

for Northern Assam, and low to very high for the Barak valley. A large proportion of the area 502 

is in a very high vulnerable zone located along West Bengal, Meghalaya, and Indo-Bangladesh 503 

border. These areas have very high to moderate population density, a very high percentage of 504 

the vulnerable population, low literacy and employment rate, and high building density 505 

(Chakraborty and Mukhopadhyay 2019). About 57.37% of the total areas have moderate to 506 

high FVI (Figure 5d). Very high to moderate FVI are observed for Lower and Barak valley of 507 
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Assam. For Upper and Northern Assam, moderate to very low FVI values are identified, and a 508 

large part of Central Assam shows very low flood vulnerability (Figure 5b). 509 

Figure 5 510 

The FHI and FVI profiles of Assam are different because flood hazards represent real and 511 

existing physical elements that alter gradually, and the more dynamic indicators determine 512 

flood vulnerability (Sharma et al 2018).		513 

The spatial distribution of FRI shows that both FHI and FVI contribute significantly to the 514 

generation of FRI, but their influences differ in many parts of the study area. Northern Assam 515 

has moderate to high FHI, and moderate to low FVI and FRI classes. For Upper Assam, the 516 

FHI ranges from moderate to very high, FVI and FRI range from very low to moderate. Barak 517 

valley has moderate to very high FHI values, low to high FVI and FRI classes. Lower Assam 518 

falls in the moderate to a very high flood risk category, and Central Assam has low to very low 519 

flood risk values. The spatial distribution of FRI indicates that flood vulnerability indicators 520 

contribute more to the estimation of risk than the hazard indicators (Figure 5c). Moderate to 521 

very high FRI is observed for more than 50% of the total study area (Figure 5d). 522 

4.4. Mapping of FHI, FVI, and FRI at the administrative level 523 

4.4.1. Lower Assam 524 

In lower Assam, 90.29%, 86.03%, and 88.32% of the total study area fall under moderate to 525 

very high FHI, FVI and FRI classes, respectively (Figure 6(p)-6(r)). Dhubri, Goalpara Barpeta, 526 

Bongaigaon, and Chirang lie in high to very high FHI, FVI, and FRI zones. The FRI class for 527 

Kokrajhar district ranges from high to low, with moderate FVI and very high FHI. Nalbari lies 528 

in very high to high flood hazard zonation with moderate to high FVI resulting in high to 529 

moderate FRI. The area of Kamrup and Baksa falls under very high to low FHI and FVI class 530 

and high to low FRI class. The Kamprup metropolitan has very low to low FRI due to very low 531 

FHI and moderate FVI (Figure 6(a)-6(c)).  532 
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4.4.2. Upper Assam 533 

More than 55% of the total area of Upper Assam falls under high to very high FHI class, and 534 

less than 10% lies in high to very high FVI and FRI class (Figure 6(p)-6(r)). All the seven 535 

Upper Assam districts are in high FHI classes but moderate to very low FVI and FRI classes. 536 

(Figure 6(d)-6(f)).  537 

4.4.3. Northern Assam 538 

The Darrang district lies under high to very high flood hazard, vulnerability, and risk class in 539 

the Northern Assam. For Sonitpur, flood risk ranges from moderate to low due to lower flood 540 

hazards and vulnerability. Udalgiri district lies in a very high FVI zone but has moderate to 541 

low FHI, making it moderate towards flood susceptibility (Figure 6(g)-6(i)). The very high to 542 

moderate FHI, FVI, and FRI classes contribute approximately 85%,71%, and 63% of the total 543 

study area, respectively (Figure 6(p)-6(r)). 544 

Figure 6 545 

4.4.4. Central Assam 546 

The districts of Morigaon and Nagaon lie in moderate flood hazard and risk zones, having very 547 

high FVI due to high population density, low literacy rate, and agricultural lands and built-up 548 

areas. Similar variations are observed for FHI, FVI, and FRI classes for Karbi Anglong and 549 

Dima Hasao districts (Figure 6(j)-6(l)).  About 70% of the total study area falls under very low 550 

flood risk and vulnerability zone (Figure 6(q)-6(r)). 551 

4.4.5. Barak valley  552 

The FVI for the Karimganj district of Barak valley is very high, with moderate to very high 553 

FHI and FRI classes. On the other hand, Hailakandi and Cachar districts lie in moderate to low 554 

FVI and FRI classes with very high FHI (Figure 6(m)-6(o)). More than 60% of the study area 555 

is observed under moderate to very high FRI zones (Figure 6r). 556 
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The detailed study on flood risk assessment is essential to create more comprehensive and 557 

integrated flood risk management practices for flood-prone regions like Assam. Many studies 558 

have considered MCDA to develop a flood risk model using hydrological, geological, 559 

demographical, and LULC indicators (Armenakis et al. 2017; Chakrabortty et al. 2021). The 560 

spatial distribution of the indicators has a critical impact on the variation of FHI, FVI, and FRI 561 

at the regional and administrative levels. For FRI development, the main limitations are related 562 

to the database, including soil, topography, meteorological, lithological, historical flood events, 563 

etc (Sarmah et al. 2020; Souissi et al. 2020). In the flood hazard assessment, rainfall intensity 564 

is given higher weightage, followed by slope and runoff coefficient (Toosi et al. 2019). Factors 565 

like elevation, slope, distance to river, geomorphology, soil type drainage density are used by 566 

many researchers for the flood hazard assessment of Assam and other areas (Kumar 2016; 567 

Pathak et al. 2020; Pareta 2021). But factors like TWI, REF, and runoff coefficient are limited, 568 

especially for Assam. 569 

Similarly, for the FVI, more weightage is given to demographical indicators and LULC of the 570 

study area. The weightage assignment of the flood and vulnerability indicators is not constant, 571 

and it depends from region to region (Sarkar and Mondal 2020; Rashetnia and Jahanbani 2021). 572 

The results obtained by integrating MCDA(AHP)-GIS for the flood risk assessment of Assam 573 

will provide the urban planners, engineers, policymakers a reliable and efficient tool for 574 

identifying flood-prone zones and making effective preparedness and mitigation strategies. 575 

5. Result validation 576 

5.1. Flood hazard index map 577 

Based on 478 historical flood points, a resulting flood map was created by the interpolation 578 

method in GIS software and overlaid with the flood hazard index map, obtained by applying 579 

AHP. After performing the accuracy assessment by the confusion matrix or error matrix 580 

method, the number of pixels that matched correctly (PTRUE) and mistakenly (PFALSE) are 581 
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calculated (Table 8). The estimated accuracy is 90.75%. Calculated PRTRUE, NRTRUE, PRFALSE, 582 

and NRFALSE values are 0.90, 0.92, 0.08, and 0.10, respectively. 583 

                                                                Table 8  584 

5.2. Flood risk index map 585 

Relative mean error (RME) and root of mean-square error (RMSE) were applied to validate 586 

the flood risk map of Assam, based on the selection of 1263 flood-prone locations. The model 587 

accurately predicted 1089 locations and has an accuracy of 86.22%, the overall efficiency of 588 

the model is found to be satisfactory, with RMSE equal to 0.105 and RME equal to 0.391. For 589 

the districts like Barpeta, Chirang, Cachar, Lakhimpur, Nalbari, Morigaon, Tinsukia, 590 

Karimganj, Golaghat, Jorhat, Udalguri, Naogaon, Sivasagar, Dima Hasao, Dhubri, Sonitpur, 591 

Darrang, Dhemaji, Goalpara, Bongaigaon, Kokrajhar shows accuracy level between 85-96% 592 

and district like Kamrup metropolitan, Kamrup rural, Baksa, Hailakandi, Dibrugarh, Karbi 593 

Anglong have accuracy level ranging from 78-85%.  594 

6. Conclusion 595 

In the present study, the flood hazard, vulnerability, and risk maps of Assam at the regional 596 

and administrative levels are developed by combining MCDA-AHP and GIS tools. The flood 597 

hazard and vulnerability layer are created using different indicators, and AHP is applied to 598 

assigned weightage to the indicator. The final flood risk map is obtained by integrating hazard 599 

and vulnerability indices in GIS software and validated by confusion matrix, RME, and RMSE 600 

based on historical flood events. The results show that more than 70% of the total area lies in 601 

the moderate to very high FHI class, and it includes Lower, Upper, and Barak valley of Assam 602 

have very high FHI. About 57.37% of the total areas have moderate to high FVI consisting of 603 

the Lower and Barak valley of Assam, whereas the Central Assam shows very low flood 604 

vulnerability. For more than 50% of the total study area, moderate to very high FRI are 605 

observed in the Lower, Upper, and Barak valley of Assam. The FHI, FVI, and FRI indices 606 
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estimate the flood-prone areas of Assam and spatial variation of the indicators responsible for 607 

flood occurrence. The districts like Dhubri, Goalpara Barpeta, Bongaigaon, Darrang, 608 

Karimganj, and Chirang lie in high to very high FHI, FVI, and FRI zones. The study has 609 

inherent limitations related to the database, including soil, topography, meteorological, 610 

lithological, historical flood events, and weightage assignment. The results may provide the 611 

local governing authorities and stakeholders with a comprehensive tool for flood risk 612 

management. The methodology can be implemented in other locations to carry out a flood risk 613 

assessment with more accurate and precise data sources using time and cost-effective GIS-614 

based tools.    615 
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 774 

Table 1. LULC classification and accuracy assessment 775 

LULC 

CLASS Water 

Natural 

Vegetation Agriculture 

Built-

up 

Bare 

Land 

Total 

User 

User’s 

Accuracy 

(%) 

Producer’s 

Accuracy 

(%) 

Water 75 0 0 0 3 78 96.15 96.15 

Natural 

Vegetation 0 65 6 0 3 74 87.84 

91.55 

Agriculture 0 6 60 4 3 73 82.19 88.24 

Built-up 0 0 1 67 2 70 95.71 91.78 

Barren Land 3 0 1 2 72 78 92.31 86.75 

Total 

Producer 78 71 68 73 83 373 

 

 776 

Table 2. The scale of preference (Saaty 2008) 777 

Degree of preference Scales  

Extremely  9 

Very strongly to extremely 8 

Very strongly  7 

Strongly to very strongly 6 

Strongly  5 

Moderately to strongly 4 

Moderately  3 

Equally to moderately 2 

Equally  1 

 778 
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Table 3. Value of Random Index (Saaty 2000) 779 

n 3 4 5 6 7 8 9 10 11 12 13 14 15 

RI 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 1.51 1.54 1.56 1.57 1.58 

 780 

Table 4. Flood hazard indicators  781 

Indicator Wind Subclass % of 

area 

Effective 

weight 

(EF) 

Normalized 

EF  

Elevation  

(ELV) 

 

0.10 5-135 73.69 5 0.33 

135.01-326 14.37 4 0.27 

326.01-600 6.11 3 0.20 

600.01-960 4.62 2 0.13 

960.01-1964 1.20 1 0.07 

Slope  

(Sl) 

0.14 0-3.07 48.83 5 0.33 

3.08-8.38 30.14 4 0.27 

8.39-15.92 12.46 3 0.20 

15.93-26.25 6.21 2 0.13 

26.26-71.21 2.35 1 0.07 

Drainage Density 

(Dd) 

0.09 0-0.26 30.28 1 0.07 

0.27-0.52 29.93 2 0.13 

0.53-0.79 23.32 3 0.20 

0.80-1.05 14.47 4 0.27 

1.06-1.31 2.00 5 0.33 

Proximity to the river 

(Dr) 

 

0.10 0-500 9.65 5 0.33 

501-1000 8.73 4 0.27 

1001-2000 15.44 3 0.20 

2001-4000 24.68 2 0.13 

>4000 41.49 1 0.07 

Proximity to 

embankment breach 

locations (De) 

0.05 0-500 0.09 5 0.33 

501-1000 0.27 4 0.27 

1001-2000 1.04 3 0.20 

2001-4000 3.74 2 0.13 

>4000 94.86 1 0.07 

Soil texture (St) 0.06 Sandy clay loam 52.54 5 0.33 

Clay 3.72 4 0.27 

Sandy Loam 4.86 3 0.20 

Clay Loam 6.01 2 0.13 

Loam 32.87 1 0.07 

Geology (Geo) 0.02 Metamorphic 0.60 2 0.20 

Paleozoic 1.17 1 0.10 

Precambrian 12.85 2 0.20 

Sedimentary 85.38 5 0.50 
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Geomorphology (Gm) 0.03 Alluvial plain 43.74 5 0.31 

Denudational hill 1.53 2 0.13 

Flood plain 25.75 5 0.31 

Pediplain 5.89 3 0.19 

Structural hill 24.89 1 0.06 

Topographic wetness 

index (TWI) 

0.05 2.35-8.06 65.30 2 0.20 

8.07-11.83 24.55 3 0.30 

11.84-28.33 10.14 5 0.50 

Rainfall intensity 

(MFI) 

0.19 148.45-254.22 28.68 1 0.07 

254.23-359.98 47.20 2 0.13 

359.99-465.75 14.89 3 0.20 

465.76-571.51 6.42 4 0.27 

571.52-677.28 2.81 5 0.33 

Rainfall Erosivity 

Factor (REF) 

0.03 419.02-639.71 23.64 1 0.07 

639.72-786.84 29.56 2 0.13 

786.85-941.32 25.47 3 0.20 

941.33-1114.20 14.39 4 0.27 

1114.21-1356.96 6.93 5 0.33 

Runoff coefficient 

(RC)  

 

0.12 0-0.04 30.87 1 0.07 

0.05-0.08 29.00 2 0.13 

0.09-0.13 26.63 3 0.20 

0.14-0.20 10.09 4 0.27 

0.21-30 3.40 5 0.33 

 782 

         Table 5. Flood vulnerability indicators  783 

Indicator Wind Sub class % of 

area 

Effective 

weight 

(EF) 

Normalized 

EF  

Population density 

(PD) 

0.21 43.65-91.79 19.54 1 0.07 

91.80-364.22 27.27 2 0.13 

364.23-530.01 31.53 3 0.20 

530.02-743.15 20.65 4 0.27 

743.16-1574.76 1.02 5 0.33 

Vulnerable 

population (VP) 

0.19 

 

59.23-65.34 1.03 3 0.14 

65.35-69.34 38.03 4 0.19 

69.35-70.44 28.97 4 0.19 

70.45-71.19 10.01 5 0.24 

71.20-73.48 21.97 5 0.24 

Employment rate 

(Emp) 

0.03 

 

32.49-33.17 6.91 5 0.33 

33.18-36.68 22.68 4 0.27 

36.69-40.21 33 3 0.20 

40.22-42.81 26.06 2 0.13 

42.82-46.17 11.34 1 0.07 

Literacy rate (LR) 0.03 

 

47.32-53.90 9.99 5 0.33 

53.91-58.75 32.56 4 0.27 
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58.76-61.79 17.91 3 0.20 

61.80-70.68 34.9 2 0.13 

70.69-79.84 4.63 1 0.07 

Household with more 

than 4 family 

members (HH4) 

0.06 

 

64.72-68.32 7.53 3 0.14 

68.33-71.83 12.81 4 0.19 

71.84-75.57 39.4 4 0.19 

75.58-77.67 15.55 5 0.24 

77.68-81.83 24.7 5 0.24 

Dilapidated house 

(DPH) 

 

0.05 

 

4.03-5.85 25.39 1 0.07 

5.86-7.46 11.3 2 0.13 

7.47-11.06 29.87 3 0.20 

11.07-14.12 23.26 4 0.27 

14.13-17.59 10.17 5 0.33 

Building density 

(BD) 

0.06 

 

8.61-17.05 19.54 1 0.07 

17.06-85.78 20.53 2 0.13 

85.79-118.90 36.57 3 0.20 

118.91-149.74 18.82 4 0.27 

149.75-368.11 4.55 5 0.33 

Proximity to roads 

(DRd) 

 

0.05 

 

0-500 9.72 1 0.07 

501-1000 11.2 2 0.13 

1001-2000 16.19 3 0.20 

2001-4000 22.67 4 0.27 

>4000 40.22 5 0.33 

Proximity to hospital  

(DH) 

0.04 

 

0-500 0.10 1 0.07 

501-1000 0.29 2 0.13 

1001-2000 1.14 3 0.20 

2001-4000 4.37 4 0.27 

>4000 94.10 5 0.33 

Distance to stream 

confluence (Dc) 

0.07 

 

0-500 0.07 5 0.33 

501-1000 0.20 4 0.27 

1001-2000 0.78 3 0.20 

2001-4000 3.11 2 0.13 

>4000 95.85 1 0.07 

Flow accumulation 

(FA) 

0.07 

 

0-1000 97.77 1 0.07 

1001-2000 0.61 2 0.13 

2001-5000 0.56 3 0.20 

5001-12000 0.36 4 0.27 

>12000 0.70 5 0.33 

Land use land cover 

(LULC) 

0.14 

 

Water 4.38 5 0.33 

Natural 

vegetation 
43.74 

2 

0.13 

Agricultural 

land 
34.10 

3 

0.20 

Builtup area 13.17 4 0.27 

Bare land 4.62 1 0.07 
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   Table 6. Pair-wise comparison for flood hazard indicators 786 

Indicators MFI Sl ELV Dr Dd St REF TWI De Gm RC Geo Wind 

MFI 1 3 3 3 3 4 5 3 4 4 1 4 0.19 

Sl 
 

1 3 2 2 4 5 3 4 3 1 5 0.15 

ELV   1 2 1 3 4 3 3 3 0.33 5 0.10 

Dr    1 2 3 4 3 2 3 1 4 0.10 

Dd    
 

1 3 4 3 2 3 1 4 0.09 

St      1 4 2 2 2 0.50 2 0.06 

REF       1 2 1 1 0.20 2 0.03 

TWI        1 1 2 1 2 0.05 

De         1 3 0.33 4 0.05 

Gm          1 0.33 3 0.03 

RC           1 4 0.12 

Geo            1 0.02 

 787 

Table 7. Pair-wise comparison for flood vulnerability indicators 788 

Indicator

s 

P

D 

V

P 

LUL

C 

D

c 

F

A 

B

D 

HH

4 

DR

d 

DP

H 

D

H 

L

R 

Em

p 

Win

d 

PD 1 1 4 4 4 3 3 4 4 5 4 4 0.21 

VP  1 3 3 3 3 3 4 4 5 4 4 0.19 

LULC   1 3 4 3 3 3 3 4 4 3 0.14 

Dc    1 1 2 2 2 2 1 2 2 0.07 

FA     1 1 1 2 2 3 2 2 0.07 

BD      1 1 1 2 2 2 2 0.06 

HH4       1 1 2 2 2 2 0.06 

DRd       
 

1 1 2 1 1 0.05 

DPH         1 2 2 2 0.05 

DH          1 2 2 0.04 

LR          
 

1 1 0.03 

Emp            1 0.03 
 789 

Table 8. Confusion matrix for flood hazard  790 

Observed 

Predicted 

Non-Flood Flood Total 

Non-Flood PTRUE NFALSE Positive 

Flood PFALSE NTRUE Negative 

Non-Flood 88878692 10153760 99032452 

Flood 5777206 67551350 73328556 

 791 



 

39 

 

 792 

Figure 1. Map of the study area 793 
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Figure 2. Flood hazard indicators (a) to (l) indicate elevation; slope; drainage density; 800 

proximity to the river; proximity to embankment; soil texture; geology; geomorphology; TWI; 801 

Rainfall intensity; erosivity factor; and runoff coefficient. 802 

803 

804 

 805 
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 806 

807 

 808 

Figure 3. Flood vulnerability indicators (a) to (l) indicate population density; vulnerable 809 

population; employment rate; literacy rate; a household with more than 4 members; dilapidated 810 

house; building density; proximity to the road; proximity to the hospital; confluence distance; 811 

flow accumulation; and LULC. 812 



 

43 

 

 813 

Figure 4. LULC area distribution for (a) Flood hazard; (b) Flood vulnerability; (c) Flood risk; 814 

and (d) LULC distribution. 815 

 816 

 817 
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Figure 5. (a) Flood hazard index; (b) Flood vulnerability index; (c) Flood risk index; and (d) 818 

Area-wise distribution of FHI, FVI, and FRI. 819 

820 

 821 



 

45 

 

 822 

Figure 6. Flood profile of Assam at the administrative level (a) to (c) Lower Assam; (d) to (f) 823 

Upper Assam; (g) to (i) Northern Assam; (j) to (l) Central Assam; (m) to (o) Barak Valley; and 824 

(p) to (r) Area distribution of flood hazard, vulnerability, and risk. 825 


