
Information Processing Letters 94 (2005) 43–47

www.elsevier.com/locate/ipl

A generalization of the 0–1 principle for sorting ✩

Sanguthevar Rajasekaran a,∗, Sandeep Sen b,1

a 257 ITE Building, Department of CSE, University of Connecticut, Storrs, CT 06269, USA
b Department of Computer Science and Engineering, IIT Delhi, New Delhi 1100116, India

Received 17 March 2004; received in revised form 1 September 2004

Available online 16 January 2005

Communicated by S.E. Hambursch

Abstract

The traditional zero–one principle for sorting networks states that “if a network with n input lines sorts all 2n binary sequences

into nondecreasing order, then it will sort any arbitrary sequence of n numbers into nondecreasing order”. We generalize this to

the situation when a network sorts almost all binary sequences and relate it to the behavior of the sorting network on arbitrary

inputs. We also present an application to mesh sorting.

 2004 Elsevier B.V. All rights reserved.

Keywords: Sorting; 0–1 principle; Meshes; Average case perfomance; Analysis of algorithms; Parallel algorithms; Randomized algorithms

1. Introduction

We prove a generalization of the 0–1 principle to

sorting networks that sort almost all possible binary

sequences. This generalization will be useful in the av-

erage case analysis of sorting algorithms as well as

in the analysis of randomized sorting algorithms. It

may be noted that the 0–1 principle extends to oblivi-

✩ This research has been supported in part by the NSF Grants

CCR-9912395 and ITR-0326155.
* Corresponding author.

E-mail addresses: rajasek@engr.uconn.edu (S. Rajasekaran),

ssen@cse.iitd.ernet.in (S. Sen).
1 Part of the research done when the author was visiting University

of Connecticut and supported by NSF Grant ITR-0326155.

ous sorting algorithms [3] and although our results are

stated in the context of sorting networks, they are ap-

plicable to oblivious sorting algorithms also. The stan-

dard 0–1 principle offers great simplicity in analyzing

sorting algorithms—it suffices to assume that the in-

put consists of only zeros and ones. The same level of

simplicity is offered by the generalization presented in

this paper as well.

As an example application, we consider a sorting

algorithm for the mesh and analyze its average case

performance using the generalized 0–1 principle. This

analysis is very simple and the method is applicable

to any oblivious sorting algorithms. The generalized

0–1 principle has potential benefits for other sorting

algorithms and to the best of our knowledge no formal

generalization of the 0–1 principle existed in literature.

0020-0190/$ – see front matter 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.ipl.2004.11.013

44 S. Rajasekaran, S. Sen / Information Processing Letters 94 (2005) 43–47

Chlebus [1] used it in an ad hoc manner without giving

any formalization.

1.1. Some definitions and our results

For a self-contained exposition, we define the terms

as used in this paper and review a proof of the 0–1

principle that will be convenient for the presentation

of our result.

A Sorting Network consists of binary comparator

modules where each module has two inputs. Each

module compares the two inputs and exchanges them

in the output if they are out of order. The subsequent

comparisons do not depend on the outcome of any spe-

cific comparator. A n sorting network realizes a sorted

permutation of any n input configuration.

Although the natural realization of a sorting net-

work is a hardwired circuit with comparators and

wires connecting comparators, any sorting algorithm

that consists solely of prespecified compare–exchange

operations can be thought of as a sorting network

and is referred to as an oblivious sorting algorithm.

In future, these terms will be used interchangeably.

Note that many of the common sorting algorithms

like mergesort, quicksort, heapsort are not oblivious

whereas bubblesort is oblivious.

The traditional zero–one principle for sorting net-

works states that “if a network with n input lines sorts

all 2n binary sequences into nondecreasing order, then

it will sort any arbitrary sequence of n numbers into

nondecreasing order”. (The converse is trivial.) In [8],

the author shows that this result cannot be strength-

ened, i.e., no proper subset of the 2n sequences can

have this property.

Bubblesort [4] and shearsort [9] are two classic ex-

amples of the applications of the 0–1 principle. We

generalize the zero–one principle to situations when

a network sorts almost all binary sequences and relate

it to the behavior of the sorting network on arbitrary

inputs. More specifically, we prove the following the-

orem in Section 2.

Theorem 1.1 (Generalized 0–1 principle). Let Sk de-

note the set of length n binary strings with exactly k 0’s

0 � k � n. Then, if a sorting circuit with n input lines

sorts at least α fraction of Sk for all k, 0 � k � n, then

the circuit sorts at least (1 − (1 − α) · n) fraction of

the input permutations of n arbitrary numbers.

Note that the theorem gives nontrivial bounds only

when α > 1 − 1/n. In Section 3 we present an appli-

cation of this result to sorting on an n × n mesh. The

algorithm attains the same (optimal) bound as the al-

gorithms of Chlebus [1] and Gu and Gu [2], but the

analysis is relatively simpler and cleaner because of

the generalized 0–1 principle. It is very likely that this

theorem will have further applications to design and

analysis of sorting algorithms.

2. Proof of the main result

Definition. A string s ∈ {0,1}n is a k-string if it has

exactly k 0’s , 0 � k � n. The set of all k-strings for a

fixed k will be denoted by Sk .

Clearly the Sks are pairwise disjoint and their union

consists of all the 2n length n strings over {0,1}.
Let A(t),B(t) be two totally ordered multisets of n

elements each. A mapping f :A(t) → B(t) is mono-

tone if for all x, y ∈ A(t) and x � y, f (x) � f (y).

Observation. If f :A(t) → B(t) is monotone then the

inverse of f is also monotone.

Given In = {1,2, . . . , n}, the only monotone func-

tion between In and the multiset {0k,1n−k} is given by

fk(j) = 0 for j � k and 1 otherwise. We denote the

extension of f to a sequence a(t) = (a1, a2, . . . , at) by

f (t)(a(t)) = (f (a1), f (a2), . . . , f (at)). The correct-

ness of the standard zero–one principle is often argued

based on the following elegant result (see Knuth [4]

for a proof).

Lemma 2.1. For any n input sorting circuit C(n) and

a monotone function f ,

f (n)
(

C(n)(a(n))
)

= C(n)
(

f (n)(a(n))
)

.

Remark. For the sake of simplicity, we will avoid us-

ing superscripts to denote sequences when it is clear

from the context. For instance the previous lemma can

be restated as f (C(a)) = C(f (a)).

From our previous observation f −1
k is also mono-

tone. From the previous lemma it follows that

S. Rajasekaran, S. Sen / Information Processing Letters 94 (2005) 43–47 45

Lemma 2.2. If a sorting network C correctly sorts

fk(σ) for all k, for an input permutation σ , then it

correctly sorts σ .

Proof (sketch). Suppose i and j (j > i) are inter-

changed in σ . Consider the binary string fi(σ). Since

fi(C(σ)) = C(fi(σ)), the circuit C does not sort

fi(σ) correctly leading to a contradiction. ✷

We now turn our attention towards generalizing this

argument. For convenience, we define a bipartite graph

Gk with n! elements in one set and |Sk| on the other

(for each k). The edges of this graph are defined by

the mapping between permutations of In and strings

a ∈ Sk such that ai = fk(Π(i)), 1 � i � n, for a per-

mutation Π . Here Π(i) denotes the element of In that

is mapped to i. Note that a single permutation maps to

exactly one string in Sk , so by simple counting argu-

ments, it follows that

Lemma 2.3. Each set in the bipartite graph Gk has

vertices with equal degree. In particular, the vertices

representing Sk have degrees equal to n!
|Sk | .

In graph Gk we mark all the nodes correspond-

ing to the permutations that are not sorted correctly

and likewise we mark the nodes of Sk that are not

sorted correctly. For a fixed k, if the circuit does not

sort βk|Sk| (βk < 0) strings it does not sort at most

βk|Sk| · n!
|Sk | permutations. Therefore the total fraction

of permutations (over all values of 1 � k � n) that

may not get sorted correctly is bounded by β ·n where

β = maxk
i=1 βk . Note that we do not have to consider

k = 0 as there is only one trivial sorted sequence. Set-

ting α = 1 − β completes the proof of Theorem 1.1.

An interesting question is if we can improve the

bound, namely, the fraction of sorted inputs. The fol-

lowing lemma shows that the fraction of unsorted per-

mutations is at least β .

Lemma 2.4. If a sorting circuit does not sort some

a ∈ Sk then it does not sort (any of the permutations

corresponding to) f −1
k (a).

This can be seen as follows. At least one pair of 0

and 1 in a must be swapped in C(a), say, in positions i

and j . The corresponding elements in the inverse map

must also have been swapped from Lemma 2.1.

Remark. It is not clear if we can eliminate the mul-

tiplicative factor n, namely, are the unsorted per-

mutations disjoint corresponding to the distinct Sks?

Also note that the number of strings in the set Sp =
⋃0.51n

i=0.49n Si form an overwhelming fraction of all

length n binary strings. Even if one can design an

ad hoc sorting algorithm that works correctly for Sp

(and consequently for a large fraction of all 0–1 in-

puts), but that sorts only a negligible fraction of Slogn

(for example), the algorithm does not sort most input

permutations. See the remark following Theorem 3.1.

3. Sorting in an expected 2n + o(n) steps on an

n × n mesh

One of the most challenging problems in the con-

text of sorting numbers on an n×n mesh with one ele-

ment per processor is to sort them in time 2n (plus pos-

sibly lower order terms) which is the distance bound

on the mesh (see [7,10] for detailed surveys). In this

problem, in each step, neighboring processors are al-

lowed to communicate and exchange elements but not

store more than one element. If we relax the storage re-

quirement, then this time bound can be achieved (see

[7,10]). Note that even on the average, the distance

bound is 2n − o(n). By considering sufficiently large

sub-meshes on the opposite corners, it can be seen that

at least one of these elements must travel from one

sub-mesh to the other with high probability.

A simple modification of the algorithm of [6] gives

us a 2n + o(n) steps algorithm for sorting on the av-

erage and the analysis is based on the generalized 0–1

principle. For completeness, we describe their algo-

rithm briefly. In the remaining description, by u × v

sub-meshes we refer to all the aligned sub-meshes

consisting of processors indexed by (x, y) where iu �

x � i(u + 1) − 1, jv � y � j (v + 1) − 1 (for some

integers i and j). A row is called dirty if it consists

of both 0’s and 1’s, otherwise it is clean. The sig-

nificance of this definition stems from the fact that

an unsorted mesh contains many dirty rows whereas

a sorted mesh (in row major order) contains at most

one dirty row. For our algorithm, the sorting order is

defined in terms of blocks that are relatively ordered

among themselves in a row-major snake-like order-

ing. The elements within a block can be ordered in any

fashion since it does not affect the asymptotic perfor-

46 S. Rajasekaran, S. Sen / Information Processing Letters 94 (2005) 43–47

Fig. 1. (a) illustrates u × v sized blocked snake-like row-major ordering. (b) illustrates distribution of each block by cyclic shifts. (c) illustrates

the transformation of slices into blocks in Phase 4. Notice how consecutive slices remain consecutive.

mance and the notion of dirty row is extended to dirty

sub-mesh in the obvious manner.

Algorithm MSS [6].

1. Sort all n3/4 × n3/4 sub-meshes in a row-major

ordering.

2. Distribute each sub-mesh evenly using blocked

rotations, i.e., the ith row of every sub-mesh is

shifted right by i · n3/4 positions.

3. Sort the columns.

4. Transform every n3/4 × n horizontal slice into

n1/4 n3/4 ×n3/4 sub-meshes such that consecutive

n1/2 × n sub-meshes remain consecutive (within

a slice). The row ordering is alternated in every

slice so that after transformation, the two dirty

sub-meshes are in a snake-like row-major order.

5. Sort pairs of every consecutive (in the blocked

snake-like row-major order) sub-meshes—once

taking every odd–even pair and then taking even–

odd pair.

See Fig. 1 for an illustration of some of the steps.

Each of Phases 2, 3, and 4 can be implemented in

n time steps and the others take o(n) time resulting

in 3n + o(n) time overall (for more details of individ-

ual phases see [6]). If we examine each phase more

closely, after Phase 3, we have at most two (consecu-

tive) dirty n1/2 ×n sub-meshes. These come from dirty

rows contributed by each sorted sub-mesh (at most one

per sub-mesh) after Phase 2 that become contiguous√
n dirty rows following Phase 3.

We modify the above algorithm by eliminating the

first two phases, i.e., start with column sort. Then the

size of the dirty band (contiguous dirty rows) after

sorting the columns is the difference between the max-

imum and the minimum number of 0’s among the n

columns. Without loss of generality, assume that we

have at least �(n2) 0’s—then the expected number of

0’s in each column is �(n). From Chernoff [5] bounds

it follows that with probability exceeding 1 − 1
nα ,

the deviation of the number of 0’s is no more than

θ(
√

αn logn). Therefore, the size of the dirty band

S. Rajasekaran, S. Sen / Information Processing Letters 94 (2005) 43–47 47

is
√

cαn logn × n for some constant c after sorting

columns. By modifying the sizes of the transformed

sub-meshes to (n
√

cαn logn)
1/2 × (n

√
cαn logn)

1/2
,

in Phase 4, the 0–1 sequence is correctly ordered in

a blocked snake-like indexing after Phase 5. The total

number of steps is 2n + o(n).

Theorem 3.1. The (modified) algorithm sorts 1 − 1
nα

fraction of all inputs correctly in 2n + o(n) steps for

any fixed α > 0. With more careful choice of para-

meters for the sub-mesh sizes the fraction of correctly

sorted inputs can be increased to 1 − 1/2nε
for some

ε > 0.

Proof The success of this approach depends on the

size of the dirty band after the column sort which in

turn depends on the discrepancy of the distribution of

0’s and 1’s among the different columns. The general-

ized 0–1 principle gives a direct connection between

the discrepancy and the fraction of the inputs sorted,

viz., it will sort correctly if the discrepancy is not too

high. ✷

Remark. Most 0–1 sequences have balanced number

of 0’s and 1’s and hence we know the rough location of

the dirty band following the column sort. Therefore we

can clean it by restricting sorting to within the band.

This ad hoc approach will be an incorrect application

of Theorem 1.1.

References

[1] B.S. Chlebus, Mesh sorting and selection optimal on the aver-

age, Comput. and Inform. (Special issue on parallel and dis-

tributed computing) 16 (2) (1997).

[2] Q.P. Gu, J. Gu, Algorithms and average time bounds of sorting

on a mesh-connected computer, IEEE Trans. Parallel Distrib.

Syst. 5 (3) (1994) 308–315.

[3] T. Leighton, Introduction to Parallel Algorithms and Archi-

tectures: Arrays, Trees, Hypercubes, Morgan Kaufmann, San

Mateo, CA, 1992.

[4] D.E. Knuth, Sorting and Searching, The Art of Computer Pro-

gramming, vol. 3, Addison–Wesley, Reading, MA, 1973.

[5] R. Motwani, P. Raghavan, Randomized Algorithms, Cam-

bridge Univ. Press, New York, 1995.

[6] Y. Ma, S. Sen, D. Scherson, The distance bound for sorting on

mesh connected processor arrays is tight, in: Proc. 27th Symp.

on Foundations of Computer Science, 1986, pp. 255–263.

[7] S. Rajasekaran, Sorting and selection on interconnection net-

works, DIMACS Ser. Discrete Math. Theor. Comput. Sci. 21

(1995) 275–296.

[8] M.D. Rice, Continuous algorithms, Topology Appl. 85 (1998)

299–318.

[9] I.D. Scherson, S. Sen, A. Shamir, Shear sort: A true two-di-

mensional sorting technique for VLSI networks, in: Proc. In-

ternat. Conf. on Parallel Processing, 1986, pp. 903–908.

[10] J.F. Sibeyn, Overview of mesh results, Technical Report MPI-

I-95-1-018 MPI, Saarbrücken, 1995.

